Metamath Proof Explorer


Theorem issgrpALT

Description: The predicate "is a semigroup". (Contributed by AV, 16-Jan-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses ismgmALT.b 𝐵 = ( Base ‘ 𝑀 )
ismgmALT.o = ( +g𝑀 )
Assertion issgrpALT ( 𝑀 ∈ SGrpALT ↔ ( 𝑀 ∈ MgmALT ∧ assLaw 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ismgmALT.b 𝐵 = ( Base ‘ 𝑀 )
2 ismgmALT.o = ( +g𝑀 )
3 fveq2 ( 𝑚 = 𝑀 → ( +g𝑚 ) = ( +g𝑀 ) )
4 3 2 eqtr4di ( 𝑚 = 𝑀 → ( +g𝑚 ) = )
5 fveq2 ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) )
6 5 1 eqtr4di ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 )
7 4 6 breq12d ( 𝑚 = 𝑀 → ( ( +g𝑚 ) assLaw ( Base ‘ 𝑚 ) ↔ assLaw 𝐵 ) )
8 df-sgrp2 SGrpALT = { 𝑚 ∈ MgmALT ∣ ( +g𝑚 ) assLaw ( Base ‘ 𝑚 ) }
9 7 8 elrab2 ( 𝑀 ∈ SGrpALT ↔ ( 𝑀 ∈ MgmALT ∧ assLaw 𝐵 ) )