Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Magmas and internal binary operations (alternate approach)
Alternative definitions for magmas and semigroups
sgrp2sgrp
Next ⟩
Rings (extension)
Metamath Proof Explorer
Ascii
Unicode
Theorem
sgrp2sgrp
Description:
Equivalence of the two definitions of a semigroup.
(Contributed by
AV
, 16-Jan-2020)
Ref
Expression
Assertion
sgrp2sgrp
⊢
M
∈
SGrpALT
↔
M
∈
Smgrp
Proof
Step
Hyp
Ref
Expression
1
mgm2mgm
⊢
M
∈
MgmALT
↔
M
∈
Mgm
2
1
anbi1i
⊢
M
∈
MgmALT
∧
+
M
assLaw
Base
M
↔
M
∈
Mgm
∧
+
M
assLaw
Base
M
3
fvex
⊢
+
M
∈
V
4
fvex
⊢
Base
M
∈
V
5
3
4
pm3.2i
⊢
+
M
∈
V
∧
Base
M
∈
V
6
isasslaw
⊢
+
M
∈
V
∧
Base
M
∈
V
→
+
M
assLaw
Base
M
↔
∀
x
∈
Base
M
∀
y
∈
Base
M
∀
z
∈
Base
M
x
+
M
y
+
M
z
=
x
+
M
y
+
M
z
7
5
6
mp1i
⊢
M
∈
Mgm
→
+
M
assLaw
Base
M
↔
∀
x
∈
Base
M
∀
y
∈
Base
M
∀
z
∈
Base
M
x
+
M
y
+
M
z
=
x
+
M
y
+
M
z
8
7
pm5.32i
⊢
M
∈
Mgm
∧
+
M
assLaw
Base
M
↔
M
∈
Mgm
∧
∀
x
∈
Base
M
∀
y
∈
Base
M
∀
z
∈
Base
M
x
+
M
y
+
M
z
=
x
+
M
y
+
M
z
9
2
8
bitri
⊢
M
∈
MgmALT
∧
+
M
assLaw
Base
M
↔
M
∈
Mgm
∧
∀
x
∈
Base
M
∀
y
∈
Base
M
∀
z
∈
Base
M
x
+
M
y
+
M
z
=
x
+
M
y
+
M
z
10
eqid
⊢
Base
M
=
Base
M
11
eqid
⊢
+
M
=
+
M
12
10
11
issgrpALT
⊢
M
∈
SGrpALT
↔
M
∈
MgmALT
∧
+
M
assLaw
Base
M
13
10
11
issgrp
⊢
M
∈
Smgrp
↔
M
∈
Mgm
∧
∀
x
∈
Base
M
∀
y
∈
Base
M
∀
z
∈
Base
M
x
+
M
y
+
M
z
=
x
+
M
y
+
M
z
14
9
12
13
3bitr4i
⊢
M
∈
SGrpALT
↔
M
∈
Smgrp