Metamath Proof Explorer


Theorem sgrp2sgrp

Description: Equivalence of the two definitions of a semigroup. (Contributed by AV, 16-Jan-2020)

Ref Expression
Assertion sgrp2sgrp M SGrpALT M Smgrp

Proof

Step Hyp Ref Expression
1 mgm2mgm M MgmALT M Mgm
2 1 anbi1i M MgmALT + M assLaw Base M M Mgm + M assLaw Base M
3 fvex + M V
4 fvex Base M V
5 3 4 pm3.2i + M V Base M V
6 isasslaw + M V Base M V + M assLaw Base M x Base M y Base M z Base M x + M y + M z = x + M y + M z
7 5 6 mp1i M Mgm + M assLaw Base M x Base M y Base M z Base M x + M y + M z = x + M y + M z
8 7 pm5.32i M Mgm + M assLaw Base M M Mgm x Base M y Base M z Base M x + M y + M z = x + M y + M z
9 2 8 bitri M MgmALT + M assLaw Base M M Mgm x Base M y Base M z Base M x + M y + M z = x + M y + M z
10 eqid Base M = Base M
11 eqid + M = + M
12 10 11 issgrpALT M SGrpALT M MgmALT + M assLaw Base M
13 10 11 issgrp M Smgrp M Mgm x Base M y Base M z Base M x + M y + M z = x + M y + M z
14 9 12 13 3bitr4i M SGrpALT M Smgrp