Metamath Proof Explorer


Theorem mgm2mgm

Description: Equivalence of the two definitions of a magma. (Contributed by AV, 16-Jan-2020)

Ref Expression
Assertion mgm2mgm M MgmALT M Mgm

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid + M = + M
3 1 2 ismgmALT M MgmALT M MgmALT + M clLaw Base M
4 fvex + M V
5 fvex Base M V
6 iscllaw + M V Base M V + M clLaw Base M x Base M y Base M x + M y Base M
7 4 5 6 mp2an + M clLaw Base M x Base M y Base M x + M y Base M
8 1 2 ismgm M MgmALT M Mgm x Base M y Base M x + M y Base M
9 8 biimprd M MgmALT x Base M y Base M x + M y Base M M Mgm
10 7 9 syl5bi M MgmALT + M clLaw Base M M Mgm
11 3 10 sylbid M MgmALT M MgmALT M Mgm
12 11 pm2.43i M MgmALT M Mgm
13 mgmplusgiopALT M Mgm + M clLaw Base M
14 1 2 ismgmALT M Mgm M MgmALT + M clLaw Base M
15 13 14 mpbird M Mgm M MgmALT
16 12 15 impbii M MgmALT M Mgm