Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Magmas and internal binary operations (alternate approach)
Alternative definitions for magmas and semigroups
mgm2mgm
Next ⟩
sgrp2sgrp
Metamath Proof Explorer
Ascii
Unicode
Theorem
mgm2mgm
Description:
Equivalence of the two definitions of a magma.
(Contributed by
AV
, 16-Jan-2020)
Ref
Expression
Assertion
mgm2mgm
⊢
M
∈
MgmALT
↔
M
∈
Mgm
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
M
=
Base
M
2
eqid
⊢
+
M
=
+
M
3
1
2
ismgmALT
⊢
M
∈
MgmALT
→
M
∈
MgmALT
↔
+
M
clLaw
Base
M
4
fvex
⊢
+
M
∈
V
5
fvex
⊢
Base
M
∈
V
6
iscllaw
⊢
+
M
∈
V
∧
Base
M
∈
V
→
+
M
clLaw
Base
M
↔
∀
x
∈
Base
M
∀
y
∈
Base
M
x
+
M
y
∈
Base
M
7
4
5
6
mp2an
⊢
+
M
clLaw
Base
M
↔
∀
x
∈
Base
M
∀
y
∈
Base
M
x
+
M
y
∈
Base
M
8
1
2
ismgm
⊢
M
∈
MgmALT
→
M
∈
Mgm
↔
∀
x
∈
Base
M
∀
y
∈
Base
M
x
+
M
y
∈
Base
M
9
8
biimprd
⊢
M
∈
MgmALT
→
∀
x
∈
Base
M
∀
y
∈
Base
M
x
+
M
y
∈
Base
M
→
M
∈
Mgm
10
7
9
syl5bi
⊢
M
∈
MgmALT
→
+
M
clLaw
Base
M
→
M
∈
Mgm
11
3
10
sylbid
⊢
M
∈
MgmALT
→
M
∈
MgmALT
→
M
∈
Mgm
12
11
pm2.43i
⊢
M
∈
MgmALT
→
M
∈
Mgm
13
mgmplusgiopALT
⊢
M
∈
Mgm
→
+
M
clLaw
Base
M
14
1
2
ismgmALT
⊢
M
∈
Mgm
→
M
∈
MgmALT
↔
+
M
clLaw
Base
M
15
13
14
mpbird
⊢
M
∈
Mgm
→
M
∈
MgmALT
16
12
15
impbii
⊢
M
∈
MgmALT
↔
M
∈
Mgm