Metamath Proof Explorer


Theorem isline

Description: The predicate "is a line". (Contributed by NM, 19-Sep-2011)

Ref Expression
Hypotheses isline.l
|- .<_ = ( le ` K )
isline.j
|- .\/ = ( join ` K )
isline.a
|- A = ( Atoms ` K )
isline.n
|- N = ( Lines ` K )
Assertion isline
|- ( K e. D -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) )

Proof

Step Hyp Ref Expression
1 isline.l
 |-  .<_ = ( le ` K )
2 isline.j
 |-  .\/ = ( join ` K )
3 isline.a
 |-  A = ( Atoms ` K )
4 isline.n
 |-  N = ( Lines ` K )
5 1 2 3 4 lineset
 |-  ( K e. D -> N = { x | E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) } )
6 5 eleq2d
 |-  ( K e. D -> ( X e. N <-> X e. { x | E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) } ) )
7 3 fvexi
 |-  A e. _V
8 7 rabex
 |-  { p e. A | p .<_ ( q .\/ r ) } e. _V
9 eleq1
 |-  ( X = { p e. A | p .<_ ( q .\/ r ) } -> ( X e. _V <-> { p e. A | p .<_ ( q .\/ r ) } e. _V ) )
10 8 9 mpbiri
 |-  ( X = { p e. A | p .<_ ( q .\/ r ) } -> X e. _V )
11 10 adantl
 |-  ( ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) -> X e. _V )
12 11 a1i
 |-  ( ( q e. A /\ r e. A ) -> ( ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) -> X e. _V ) )
13 12 rexlimivv
 |-  ( E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) -> X e. _V )
14 eqeq1
 |-  ( x = X -> ( x = { p e. A | p .<_ ( q .\/ r ) } <-> X = { p e. A | p .<_ ( q .\/ r ) } ) )
15 14 anbi2d
 |-  ( x = X -> ( ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) <-> ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) )
16 15 2rexbidv
 |-  ( x = X -> ( E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) )
17 13 16 elab3
 |-  ( X e. { x | E. q e. A E. r e. A ( q =/= r /\ x = { p e. A | p .<_ ( q .\/ r ) } ) } <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) )
18 6 17 bitrdi
 |-  ( K e. D -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) )