| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isline.l |
|- .<_ = ( le ` K ) |
| 2 |
|
isline.j |
|- .\/ = ( join ` K ) |
| 3 |
|
isline.a |
|- A = ( Atoms ` K ) |
| 4 |
|
isline.n |
|- N = ( Lines ` K ) |
| 5 |
|
simpl2 |
|- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> Q e. A ) |
| 6 |
|
simpl3 |
|- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> R e. A ) |
| 7 |
|
simpr |
|- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) |
| 8 |
|
neeq1 |
|- ( q = Q -> ( q =/= r <-> Q =/= r ) ) |
| 9 |
|
oveq1 |
|- ( q = Q -> ( q .\/ r ) = ( Q .\/ r ) ) |
| 10 |
9
|
breq2d |
|- ( q = Q -> ( p .<_ ( q .\/ r ) <-> p .<_ ( Q .\/ r ) ) ) |
| 11 |
10
|
rabbidv |
|- ( q = Q -> { p e. A | p .<_ ( q .\/ r ) } = { p e. A | p .<_ ( Q .\/ r ) } ) |
| 12 |
11
|
eqeq2d |
|- ( q = Q -> ( X = { p e. A | p .<_ ( q .\/ r ) } <-> X = { p e. A | p .<_ ( Q .\/ r ) } ) ) |
| 13 |
8 12
|
anbi12d |
|- ( q = Q -> ( ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) <-> ( Q =/= r /\ X = { p e. A | p .<_ ( Q .\/ r ) } ) ) ) |
| 14 |
|
neeq2 |
|- ( r = R -> ( Q =/= r <-> Q =/= R ) ) |
| 15 |
|
oveq2 |
|- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
| 16 |
15
|
breq2d |
|- ( r = R -> ( p .<_ ( Q .\/ r ) <-> p .<_ ( Q .\/ R ) ) ) |
| 17 |
16
|
rabbidv |
|- ( r = R -> { p e. A | p .<_ ( Q .\/ r ) } = { p e. A | p .<_ ( Q .\/ R ) } ) |
| 18 |
17
|
eqeq2d |
|- ( r = R -> ( X = { p e. A | p .<_ ( Q .\/ r ) } <-> X = { p e. A | p .<_ ( Q .\/ R ) } ) ) |
| 19 |
14 18
|
anbi12d |
|- ( r = R -> ( ( Q =/= r /\ X = { p e. A | p .<_ ( Q .\/ r ) } ) <-> ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) ) |
| 20 |
13 19
|
rspc2ev |
|- ( ( Q e. A /\ R e. A /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) |
| 21 |
5 6 7 20
|
syl3anc |
|- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) |
| 22 |
|
simpl1 |
|- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> K e. D ) |
| 23 |
1 2 3 4
|
isline |
|- ( K e. D -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 24 |
22 23
|
syl |
|- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> ( X e. N <-> E. q e. A E. r e. A ( q =/= r /\ X = { p e. A | p .<_ ( q .\/ r ) } ) ) ) |
| 25 |
21 24
|
mpbird |
|- ( ( ( K e. D /\ Q e. A /\ R e. A ) /\ ( Q =/= R /\ X = { p e. A | p .<_ ( Q .\/ R ) } ) ) -> X e. N ) |