Step |
Hyp |
Ref |
Expression |
1 |
|
isridl.u |
|- U = ( LIdeal ` ( oppR ` R ) ) |
2 |
|
isridl.b |
|- B = ( Base ` R ) |
3 |
|
isridl.t |
|- .x. = ( .r ` R ) |
4 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
5 |
4
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
6 |
4 2
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
7 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
8 |
1 6 7
|
dflidl2 |
|- ( ( oppR ` R ) e. Ring -> ( I e. U <-> ( I e. ( SubGrp ` ( oppR ` R ) ) /\ A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) ) |
9 |
5 8
|
syl |
|- ( R e. Ring -> ( I e. U <-> ( I e. ( SubGrp ` ( oppR ` R ) ) /\ A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) ) |
10 |
4
|
opprsubg |
|- ( SubGrp ` R ) = ( SubGrp ` ( oppR ` R ) ) |
11 |
10
|
eqcomi |
|- ( SubGrp ` ( oppR ` R ) ) = ( SubGrp ` R ) |
12 |
11
|
a1i |
|- ( R e. Ring -> ( SubGrp ` ( oppR ` R ) ) = ( SubGrp ` R ) ) |
13 |
12
|
eleq2d |
|- ( R e. Ring -> ( I e. ( SubGrp ` ( oppR ` R ) ) <-> I e. ( SubGrp ` R ) ) ) |
14 |
2 3 4 7
|
opprmul |
|- ( x ( .r ` ( oppR ` R ) ) y ) = ( y .x. x ) |
15 |
14
|
eleq1i |
|- ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) |
16 |
15
|
a1i |
|- ( ( ( R e. Ring /\ x e. B ) /\ y e. I ) -> ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) ) |
17 |
16
|
ralbidva |
|- ( ( R e. Ring /\ x e. B ) -> ( A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. y e. I ( y .x. x ) e. I ) ) |
18 |
17
|
ralbidva |
|- ( R e. Ring -> ( A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |
19 |
13 18
|
anbi12d |
|- ( R e. Ring -> ( ( I e. ( SubGrp ` ( oppR ` R ) ) /\ A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) <-> ( I e. ( SubGrp ` R ) /\ A. x e. B A. y e. I ( y .x. x ) e. I ) ) ) |
20 |
9 19
|
bitrd |
|- ( R e. Ring -> ( I e. U <-> ( I e. ( SubGrp ` R ) /\ A. x e. B A. y e. I ( y .x. x ) e. I ) ) ) |