Step |
Hyp |
Ref |
Expression |
1 |
|
isubgr3stgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isubgr3stgr.u |
|- U = ( G NeighbVtx X ) |
3 |
|
isubgr3stgr.c |
|- C = ( G ClNeighbVtx X ) |
4 |
|
isubgr3stgr.n |
|- N e. NN0 |
5 |
|
isubgr3stgr.s |
|- S = ( StarGr ` N ) |
6 |
|
isubgr3stgr.w |
|- W = ( Vtx ` S ) |
7 |
|
isubgr3stgr.e |
|- E = ( Edg ` G ) |
8 |
|
isubgr3stgr.i |
|- I = ( Edg ` ( G ISubGr C ) ) |
9 |
|
isubgr3stgr.h |
|- H = ( i e. I |-> ( F " i ) ) |
10 |
9
|
a1i |
|- ( ( F : C --> W /\ Y e. I ) -> H = ( i e. I |-> ( F " i ) ) ) |
11 |
|
imaeq2 |
|- ( i = Y -> ( F " i ) = ( F " Y ) ) |
12 |
11
|
adantl |
|- ( ( ( F : C --> W /\ Y e. I ) /\ i = Y ) -> ( F " i ) = ( F " Y ) ) |
13 |
|
simpr |
|- ( ( F : C --> W /\ Y e. I ) -> Y e. I ) |
14 |
|
id |
|- ( F : C --> W -> F : C --> W ) |
15 |
3
|
ovexi |
|- C e. _V |
16 |
15
|
a1i |
|- ( F : C --> W -> C e. _V ) |
17 |
14 16
|
fexd |
|- ( F : C --> W -> F e. _V ) |
18 |
17
|
adantr |
|- ( ( F : C --> W /\ Y e. I ) -> F e. _V ) |
19 |
18
|
imaexd |
|- ( ( F : C --> W /\ Y e. I ) -> ( F " Y ) e. _V ) |
20 |
10 12 13 19
|
fvmptd |
|- ( ( F : C --> W /\ Y e. I ) -> ( H ` Y ) = ( F " Y ) ) |