Metamath Proof Explorer


Theorem isubgr3stgrlem5

Description: Lemma 5 for isubgr3stgr . (Contributed by AV, 24-Sep-2025)

Ref Expression
Hypotheses isubgr3stgr.v
|- V = ( Vtx ` G )
isubgr3stgr.u
|- U = ( G NeighbVtx X )
isubgr3stgr.c
|- C = ( G ClNeighbVtx X )
isubgr3stgr.n
|- N e. NN0
isubgr3stgr.s
|- S = ( StarGr ` N )
isubgr3stgr.w
|- W = ( Vtx ` S )
isubgr3stgr.e
|- E = ( Edg ` G )
isubgr3stgr.i
|- I = ( Edg ` ( G ISubGr C ) )
isubgr3stgr.h
|- H = ( i e. I |-> ( F " i ) )
Assertion isubgr3stgrlem5
|- ( ( F : C --> W /\ Y e. I ) -> ( H ` Y ) = ( F " Y ) )

Proof

Step Hyp Ref Expression
1 isubgr3stgr.v
 |-  V = ( Vtx ` G )
2 isubgr3stgr.u
 |-  U = ( G NeighbVtx X )
3 isubgr3stgr.c
 |-  C = ( G ClNeighbVtx X )
4 isubgr3stgr.n
 |-  N e. NN0
5 isubgr3stgr.s
 |-  S = ( StarGr ` N )
6 isubgr3stgr.w
 |-  W = ( Vtx ` S )
7 isubgr3stgr.e
 |-  E = ( Edg ` G )
8 isubgr3stgr.i
 |-  I = ( Edg ` ( G ISubGr C ) )
9 isubgr3stgr.h
 |-  H = ( i e. I |-> ( F " i ) )
10 9 a1i
 |-  ( ( F : C --> W /\ Y e. I ) -> H = ( i e. I |-> ( F " i ) ) )
11 imaeq2
 |-  ( i = Y -> ( F " i ) = ( F " Y ) )
12 11 adantl
 |-  ( ( ( F : C --> W /\ Y e. I ) /\ i = Y ) -> ( F " i ) = ( F " Y ) )
13 simpr
 |-  ( ( F : C --> W /\ Y e. I ) -> Y e. I )
14 id
 |-  ( F : C --> W -> F : C --> W )
15 3 ovexi
 |-  C e. _V
16 15 a1i
 |-  ( F : C --> W -> C e. _V )
17 14 16 fexd
 |-  ( F : C --> W -> F e. _V )
18 17 adantr
 |-  ( ( F : C --> W /\ Y e. I ) -> F e. _V )
19 18 imaexd
 |-  ( ( F : C --> W /\ Y e. I ) -> ( F " Y ) e. _V )
20 10 12 13 19 fvmptd
 |-  ( ( F : C --> W /\ Y e. I ) -> ( H ` Y ) = ( F " Y ) )