| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isubgr3stgr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isubgr3stgr.u |
|- U = ( G NeighbVtx X ) |
| 3 |
|
isubgr3stgr.c |
|- C = ( G ClNeighbVtx X ) |
| 4 |
|
isubgr3stgr.n |
|- N e. NN0 |
| 5 |
|
isubgr3stgr.s |
|- S = ( StarGr ` N ) |
| 6 |
|
isubgr3stgr.w |
|- W = ( Vtx ` S ) |
| 7 |
|
isubgr3stgr.e |
|- E = ( Edg ` G ) |
| 8 |
|
simpl |
|- ( ( G e. USGraph /\ X e. V ) -> G e. USGraph ) |
| 9 |
|
simpr |
|- ( ( G e. USGraph /\ X e. V ) -> X e. V ) |
| 10 |
|
simpl |
|- ( ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) -> ( # ` U ) = N ) |
| 11 |
1 2 3 4 5 6
|
isubgr3stgrlem3 |
|- ( ( G e. USGraph /\ X e. V /\ ( # ` U ) = N ) -> E. f ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) |
| 12 |
8 9 10 11
|
syl2an3an |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> E. f ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) |
| 13 |
1
|
clnbgrssvtx |
|- ( G ClNeighbVtx X ) C_ V |
| 14 |
3 13
|
eqsstri |
|- C C_ V |
| 15 |
14
|
a1i |
|- ( X e. V -> C C_ V ) |
| 16 |
15
|
anim2i |
|- ( ( G e. USGraph /\ X e. V ) -> ( G e. USGraph /\ C C_ V ) ) |
| 17 |
16
|
adantr |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( G e. USGraph /\ C C_ V ) ) |
| 18 |
1
|
isubgrvtx |
|- ( ( G e. USGraph /\ C C_ V ) -> ( Vtx ` ( G ISubGr C ) ) = C ) |
| 19 |
17 18
|
syl |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( Vtx ` ( G ISubGr C ) ) = C ) |
| 20 |
19
|
eqcomd |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> C = ( Vtx ` ( G ISubGr C ) ) ) |
| 21 |
20
|
f1oeq2d |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( f : C -1-1-onto-> W <-> f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W ) ) |
| 22 |
21
|
biimpd |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( f : C -1-1-onto-> W -> f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W ) ) |
| 23 |
22
|
adantrd |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) -> f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W ) ) |
| 24 |
23
|
imp |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) -> f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W ) |
| 25 |
|
fvexd |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) -> ( Edg ` ( G ISubGr C ) ) e. _V ) |
| 26 |
25
|
mptexd |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) -> ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) e. _V ) |
| 27 |
|
eqid |
|- ( Edg ` ( G ISubGr C ) ) = ( Edg ` ( G ISubGr C ) ) |
| 28 |
|
eqid |
|- ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) = ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) |
| 29 |
1 2 3 4 5 6 7 27 28
|
isubgr3stgrlem9 |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) -> ( ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) ` e ) ) ) |
| 30 |
|
f1oeq1 |
|- ( g = ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) -> ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) <-> ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) ) ) |
| 31 |
|
fveq1 |
|- ( g = ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) -> ( g ` e ) = ( ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) ` e ) ) |
| 32 |
31
|
eqeq2d |
|- ( g = ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) -> ( ( f " e ) = ( g ` e ) <-> ( f " e ) = ( ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) ` e ) ) ) |
| 33 |
32
|
ralbidv |
|- ( g = ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) -> ( A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) <-> A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) ` e ) ) ) |
| 34 |
30 33
|
anbi12d |
|- ( g = ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) -> ( ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) <-> ( ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( ( i e. ( Edg ` ( G ISubGr C ) ) |-> ( f " i ) ) ` e ) ) ) ) |
| 35 |
26 29 34
|
spcedv |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) -> E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) |
| 36 |
24 35
|
jca |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) ) -> ( f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W /\ E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) ) |
| 37 |
36
|
ex |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) -> ( f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W /\ E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) ) ) |
| 38 |
37
|
eximdv |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( E. f ( f : C -1-1-onto-> W /\ ( f ` X ) = 0 ) -> E. f ( f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W /\ E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) ) ) |
| 39 |
12 38
|
mpd |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> E. f ( f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W /\ E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) ) |
| 40 |
1
|
isubgrusgr |
|- ( ( G e. USGraph /\ C C_ V ) -> ( G ISubGr C ) e. USGraph ) |
| 41 |
16 40
|
syl |
|- ( ( G e. USGraph /\ X e. V ) -> ( G ISubGr C ) e. USGraph ) |
| 42 |
|
usgruspgr |
|- ( ( G ISubGr C ) e. USGraph -> ( G ISubGr C ) e. USPGraph ) |
| 43 |
|
uspgrushgr |
|- ( ( G ISubGr C ) e. USPGraph -> ( G ISubGr C ) e. USHGraph ) |
| 44 |
41 42 43
|
3syl |
|- ( ( G e. USGraph /\ X e. V ) -> ( G ISubGr C ) e. USHGraph ) |
| 45 |
|
stgrusgra |
|- ( N e. NN0 -> ( StarGr ` N ) e. USGraph ) |
| 46 |
|
usgruspgr |
|- ( ( StarGr ` N ) e. USGraph -> ( StarGr ` N ) e. USPGraph ) |
| 47 |
|
uspgrushgr |
|- ( ( StarGr ` N ) e. USPGraph -> ( StarGr ` N ) e. USHGraph ) |
| 48 |
45 46 47
|
3syl |
|- ( N e. NN0 -> ( StarGr ` N ) e. USHGraph ) |
| 49 |
4 48
|
ax-mp |
|- ( StarGr ` N ) e. USHGraph |
| 50 |
|
eqid |
|- ( Vtx ` ( G ISubGr C ) ) = ( Vtx ` ( G ISubGr C ) ) |
| 51 |
5
|
fveq2i |
|- ( Vtx ` S ) = ( Vtx ` ( StarGr ` N ) ) |
| 52 |
6 51
|
eqtri |
|- W = ( Vtx ` ( StarGr ` N ) ) |
| 53 |
|
eqid |
|- ( Edg ` ( StarGr ` N ) ) = ( Edg ` ( StarGr ` N ) ) |
| 54 |
50 52 27 53
|
gricushgr |
|- ( ( ( G ISubGr C ) e. USHGraph /\ ( StarGr ` N ) e. USHGraph ) -> ( ( G ISubGr C ) ~=gr ( StarGr ` N ) <-> E. f ( f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W /\ E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) ) ) |
| 55 |
44 49 54
|
sylancl |
|- ( ( G e. USGraph /\ X e. V ) -> ( ( G ISubGr C ) ~=gr ( StarGr ` N ) <-> E. f ( f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W /\ E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) ) ) |
| 56 |
55
|
adantr |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( ( G ISubGr C ) ~=gr ( StarGr ` N ) <-> E. f ( f : ( Vtx ` ( G ISubGr C ) ) -1-1-onto-> W /\ E. g ( g : ( Edg ` ( G ISubGr C ) ) -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. ( Edg ` ( G ISubGr C ) ) ( f " e ) = ( g ` e ) ) ) ) ) |
| 57 |
39 56
|
mpbird |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) -> ( G ISubGr C ) ~=gr ( StarGr ` N ) ) |
| 58 |
57
|
ex |
|- ( ( G e. USGraph /\ X e. V ) -> ( ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) -> ( G ISubGr C ) ~=gr ( StarGr ` N ) ) ) |