Metamath Proof Explorer


Theorem isubgr3stgrlem9

Description: Lemma 9 for isubgr3stgr . (Contributed by AV, 29-Sep-2025)

Ref Expression
Hypotheses isubgr3stgr.v
|- V = ( Vtx ` G )
isubgr3stgr.u
|- U = ( G NeighbVtx X )
isubgr3stgr.c
|- C = ( G ClNeighbVtx X )
isubgr3stgr.n
|- N e. NN0
isubgr3stgr.s
|- S = ( StarGr ` N )
isubgr3stgr.w
|- W = ( Vtx ` S )
isubgr3stgr.e
|- E = ( Edg ` G )
isubgr3stgr.i
|- I = ( Edg ` ( G ISubGr C ) )
isubgr3stgr.h
|- H = ( i e. I |-> ( F " i ) )
Assertion isubgr3stgrlem9
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( H : I -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. I ( F " e ) = ( H ` e ) ) )

Proof

Step Hyp Ref Expression
1 isubgr3stgr.v
 |-  V = ( Vtx ` G )
2 isubgr3stgr.u
 |-  U = ( G NeighbVtx X )
3 isubgr3stgr.c
 |-  C = ( G ClNeighbVtx X )
4 isubgr3stgr.n
 |-  N e. NN0
5 isubgr3stgr.s
 |-  S = ( StarGr ` N )
6 isubgr3stgr.w
 |-  W = ( Vtx ` S )
7 isubgr3stgr.e
 |-  E = ( Edg ` G )
8 isubgr3stgr.i
 |-  I = ( Edg ` ( G ISubGr C ) )
9 isubgr3stgr.h
 |-  H = ( i e. I |-> ( F " i ) )
10 1 2 3 4 5 6 7 8 9 isubgr3stgrlem8
 |-  ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> H : I -1-1-onto-> ( Edg ` ( StarGr ` N ) ) )
11 f1of
 |-  ( F : C -1-1-onto-> W -> F : C --> W )
12 11 ad2antrl
 |-  ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> F : C --> W )
13 1 2 3 4 5 6 7 8 9 isubgr3stgrlem5
 |-  ( ( F : C --> W /\ e e. I ) -> ( H ` e ) = ( F " e ) )
14 13 eqcomd
 |-  ( ( F : C --> W /\ e e. I ) -> ( F " e ) = ( H ` e ) )
15 12 14 sylan
 |-  ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ e e. I ) -> ( F " e ) = ( H ` e ) )
16 15 ralrimiva
 |-  ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> A. e e. I ( F " e ) = ( H ` e ) )
17 10 16 jca
 |-  ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( H : I -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. I ( F " e ) = ( H ` e ) ) )