Step |
Hyp |
Ref |
Expression |
1 |
|
isubgr3stgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isubgr3stgr.u |
|- U = ( G NeighbVtx X ) |
3 |
|
isubgr3stgr.c |
|- C = ( G ClNeighbVtx X ) |
4 |
|
isubgr3stgr.n |
|- N e. NN0 |
5 |
|
isubgr3stgr.s |
|- S = ( StarGr ` N ) |
6 |
|
isubgr3stgr.w |
|- W = ( Vtx ` S ) |
7 |
|
isubgr3stgr.e |
|- E = ( Edg ` G ) |
8 |
|
isubgr3stgr.i |
|- I = ( Edg ` ( G ISubGr C ) ) |
9 |
|
isubgr3stgr.h |
|- H = ( i e. I |-> ( F " i ) ) |
10 |
1 2 3 4 5 6 7 8 9
|
isubgr3stgrlem8 |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> H : I -1-1-onto-> ( Edg ` ( StarGr ` N ) ) ) |
11 |
|
f1of |
|- ( F : C -1-1-onto-> W -> F : C --> W ) |
12 |
11
|
ad2antrl |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> F : C --> W ) |
13 |
1 2 3 4 5 6 7 8 9
|
isubgr3stgrlem5 |
|- ( ( F : C --> W /\ e e. I ) -> ( H ` e ) = ( F " e ) ) |
14 |
13
|
eqcomd |
|- ( ( F : C --> W /\ e e. I ) -> ( F " e ) = ( H ` e ) ) |
15 |
12 14
|
sylan |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ e e. I ) -> ( F " e ) = ( H ` e ) ) |
16 |
15
|
ralrimiva |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> A. e e. I ( F " e ) = ( H ` e ) ) |
17 |
10 16
|
jca |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( ( # ` U ) = N /\ A. x e. U A. y e. U { x , y } e/ E ) ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( H : I -1-1-onto-> ( Edg ` ( StarGr ` N ) ) /\ A. e e. I ( F " e ) = ( H ` e ) ) ) |