Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
|- ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-onto-> { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } |
2 |
|
f1of1 |
|- ( ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-onto-> { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -> ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-> { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) |
3 |
1 2
|
mp1i |
|- ( N e. NN0 -> ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-> { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) |
4 |
|
simpllr |
|- ( ( ( ( N e. NN0 /\ k e. ~P ( 0 ... N ) ) /\ x e. ( 1 ... N ) ) /\ k = { 0 , x } ) -> k e. ~P ( 0 ... N ) ) |
5 |
|
fveq2 |
|- ( k = { 0 , x } -> ( # ` k ) = ( # ` { 0 , x } ) ) |
6 |
|
0red |
|- ( x e. ( 1 ... N ) -> 0 e. RR ) |
7 |
|
elfznn |
|- ( x e. ( 1 ... N ) -> x e. NN ) |
8 |
7
|
nngt0d |
|- ( x e. ( 1 ... N ) -> 0 < x ) |
9 |
6 8
|
ltned |
|- ( x e. ( 1 ... N ) -> 0 =/= x ) |
10 |
|
c0ex |
|- 0 e. _V |
11 |
|
vex |
|- x e. _V |
12 |
10 11
|
pm3.2i |
|- ( 0 e. _V /\ x e. _V ) |
13 |
|
hashprg |
|- ( ( 0 e. _V /\ x e. _V ) -> ( 0 =/= x <-> ( # ` { 0 , x } ) = 2 ) ) |
14 |
12 13
|
mp1i |
|- ( x e. ( 1 ... N ) -> ( 0 =/= x <-> ( # ` { 0 , x } ) = 2 ) ) |
15 |
9 14
|
mpbid |
|- ( x e. ( 1 ... N ) -> ( # ` { 0 , x } ) = 2 ) |
16 |
15
|
adantl |
|- ( ( ( N e. NN0 /\ k e. ~P ( 0 ... N ) ) /\ x e. ( 1 ... N ) ) -> ( # ` { 0 , x } ) = 2 ) |
17 |
5 16
|
sylan9eqr |
|- ( ( ( ( N e. NN0 /\ k e. ~P ( 0 ... N ) ) /\ x e. ( 1 ... N ) ) /\ k = { 0 , x } ) -> ( # ` k ) = 2 ) |
18 |
4 17
|
jca |
|- ( ( ( ( N e. NN0 /\ k e. ~P ( 0 ... N ) ) /\ x e. ( 1 ... N ) ) /\ k = { 0 , x } ) -> ( k e. ~P ( 0 ... N ) /\ ( # ` k ) = 2 ) ) |
19 |
18
|
ex |
|- ( ( ( N e. NN0 /\ k e. ~P ( 0 ... N ) ) /\ x e. ( 1 ... N ) ) -> ( k = { 0 , x } -> ( k e. ~P ( 0 ... N ) /\ ( # ` k ) = 2 ) ) ) |
20 |
19
|
rexlimdva |
|- ( ( N e. NN0 /\ k e. ~P ( 0 ... N ) ) -> ( E. x e. ( 1 ... N ) k = { 0 , x } -> ( k e. ~P ( 0 ... N ) /\ ( # ` k ) = 2 ) ) ) |
21 |
20
|
expimpd |
|- ( N e. NN0 -> ( ( k e. ~P ( 0 ... N ) /\ E. x e. ( 1 ... N ) k = { 0 , x } ) -> ( k e. ~P ( 0 ... N ) /\ ( # ` k ) = 2 ) ) ) |
22 |
|
eqeq1 |
|- ( e = k -> ( e = { 0 , x } <-> k = { 0 , x } ) ) |
23 |
22
|
rexbidv |
|- ( e = k -> ( E. x e. ( 1 ... N ) e = { 0 , x } <-> E. x e. ( 1 ... N ) k = { 0 , x } ) ) |
24 |
23
|
elrab |
|- ( k e. { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } <-> ( k e. ~P ( 0 ... N ) /\ E. x e. ( 1 ... N ) k = { 0 , x } ) ) |
25 |
|
fveqeq2 |
|- ( e = k -> ( ( # ` e ) = 2 <-> ( # ` k ) = 2 ) ) |
26 |
25
|
elrab |
|- ( k e. { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } <-> ( k e. ~P ( 0 ... N ) /\ ( # ` k ) = 2 ) ) |
27 |
21 24 26
|
3imtr4g |
|- ( N e. NN0 -> ( k e. { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -> k e. { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } ) ) |
28 |
27
|
ssrdv |
|- ( N e. NN0 -> { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } C_ { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } ) |
29 |
|
f1ss |
|- ( ( ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-> { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } /\ { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } C_ { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } ) -> ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-> { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } ) |
30 |
3 28 29
|
syl2anc |
|- ( N e. NN0 -> ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-> { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } ) |
31 |
|
stgriedg |
|- ( N e. NN0 -> ( iEdg ` ( StarGr ` N ) ) = ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) ) |
32 |
31
|
dmeqd |
|- ( N e. NN0 -> dom ( iEdg ` ( StarGr ` N ) ) = dom ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) ) |
33 |
|
dmresi |
|- dom ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) = { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } |
34 |
32 33
|
eqtrdi |
|- ( N e. NN0 -> dom ( iEdg ` ( StarGr ` N ) ) = { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) |
35 |
|
stgrvtx |
|- ( N e. NN0 -> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) ) |
36 |
35
|
pweqd |
|- ( N e. NN0 -> ~P ( Vtx ` ( StarGr ` N ) ) = ~P ( 0 ... N ) ) |
37 |
36
|
rabeqdv |
|- ( N e. NN0 -> { e e. ~P ( Vtx ` ( StarGr ` N ) ) | ( # ` e ) = 2 } = { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } ) |
38 |
31 34 37
|
f1eq123d |
|- ( N e. NN0 -> ( ( iEdg ` ( StarGr ` N ) ) : dom ( iEdg ` ( StarGr ` N ) ) -1-1-> { e e. ~P ( Vtx ` ( StarGr ` N ) ) | ( # ` e ) = 2 } <-> ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) : { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } -1-1-> { e e. ~P ( 0 ... N ) | ( # ` e ) = 2 } ) ) |
39 |
30 38
|
mpbird |
|- ( N e. NN0 -> ( iEdg ` ( StarGr ` N ) ) : dom ( iEdg ` ( StarGr ` N ) ) -1-1-> { e e. ~P ( Vtx ` ( StarGr ` N ) ) | ( # ` e ) = 2 } ) |
40 |
|
fvex |
|- ( StarGr ` N ) e. _V |
41 |
|
eqid |
|- ( Vtx ` ( StarGr ` N ) ) = ( Vtx ` ( StarGr ` N ) ) |
42 |
|
eqid |
|- ( iEdg ` ( StarGr ` N ) ) = ( iEdg ` ( StarGr ` N ) ) |
43 |
41 42
|
isusgrs |
|- ( ( StarGr ` N ) e. _V -> ( ( StarGr ` N ) e. USGraph <-> ( iEdg ` ( StarGr ` N ) ) : dom ( iEdg ` ( StarGr ` N ) ) -1-1-> { e e. ~P ( Vtx ` ( StarGr ` N ) ) | ( # ` e ) = 2 } ) ) |
44 |
40 43
|
mp1i |
|- ( N e. NN0 -> ( ( StarGr ` N ) e. USGraph <-> ( iEdg ` ( StarGr ` N ) ) : dom ( iEdg ` ( StarGr ` N ) ) -1-1-> { e e. ~P ( Vtx ` ( StarGr ` N ) ) | ( # ` e ) = 2 } ) ) |
45 |
39 44
|
mpbird |
|- ( N e. NN0 -> ( StarGr ` N ) e. USGraph ) |