Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
⊢ ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1-onto→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } |
2 |
|
f1of1 |
⊢ ( ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1-onto→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } → ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) |
3 |
1 2
|
mp1i |
⊢ ( 𝑁 ∈ ℕ0 → ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) |
4 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 = { 0 , 𝑥 } ) → 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = { 0 , 𝑥 } → ( ♯ ‘ 𝑘 ) = ( ♯ ‘ { 0 , 𝑥 } ) ) |
6 |
|
0red |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 0 ∈ ℝ ) |
7 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) |
8 |
7
|
nngt0d |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 0 < 𝑥 ) |
9 |
6 8
|
ltned |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 0 ≠ 𝑥 ) |
10 |
|
c0ex |
⊢ 0 ∈ V |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
10 11
|
pm3.2i |
⊢ ( 0 ∈ V ∧ 𝑥 ∈ V ) |
13 |
|
hashprg |
⊢ ( ( 0 ∈ V ∧ 𝑥 ∈ V ) → ( 0 ≠ 𝑥 ↔ ( ♯ ‘ { 0 , 𝑥 } ) = 2 ) ) |
14 |
12 13
|
mp1i |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → ( 0 ≠ 𝑥 ↔ ( ♯ ‘ { 0 , 𝑥 } ) = 2 ) ) |
15 |
9 14
|
mpbid |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → ( ♯ ‘ { 0 , 𝑥 } ) = 2 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ♯ ‘ { 0 , 𝑥 } ) = 2 ) |
17 |
5 16
|
sylan9eqr |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 = { 0 , 𝑥 } ) → ( ♯ ‘ 𝑘 ) = 2 ) |
18 |
4 17
|
jca |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑘 = { 0 , 𝑥 } ) → ( 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ( ♯ ‘ 𝑘 ) = 2 ) ) |
19 |
18
|
ex |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 = { 0 , 𝑥 } → ( 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ( ♯ ‘ 𝑘 ) = 2 ) ) ) |
20 |
19
|
rexlimdva |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ) → ( ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑘 = { 0 , 𝑥 } → ( 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ( ♯ ‘ 𝑘 ) = 2 ) ) ) |
21 |
20
|
expimpd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑘 = { 0 , 𝑥 } ) → ( 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ( ♯ ‘ 𝑘 ) = 2 ) ) ) |
22 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑘 → ( 𝑒 = { 0 , 𝑥 } ↔ 𝑘 = { 0 , 𝑥 } ) ) |
23 |
22
|
rexbidv |
⊢ ( 𝑒 = 𝑘 → ( ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } ↔ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑘 = { 0 , 𝑥 } ) ) |
24 |
23
|
elrab |
⊢ ( 𝑘 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ↔ ( 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑘 = { 0 , 𝑥 } ) ) |
25 |
|
fveqeq2 |
⊢ ( 𝑒 = 𝑘 → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ 𝑘 ) = 2 ) ) |
26 |
25
|
elrab |
⊢ ( 𝑘 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝑘 ∈ 𝒫 ( 0 ... 𝑁 ) ∧ ( ♯ ‘ 𝑘 ) = 2 ) ) |
27 |
21 24 26
|
3imtr4g |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑘 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } → 𝑘 ∈ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
28 |
27
|
ssrdv |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ⊆ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
29 |
|
f1ss |
⊢ ( ( ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ∧ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ⊆ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) → ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
30 |
3 28 29
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
31 |
|
stgriedg |
⊢ ( 𝑁 ∈ ℕ0 → ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) = ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ) |
32 |
31
|
dmeqd |
⊢ ( 𝑁 ∈ ℕ0 → dom ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) = dom ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ) |
33 |
|
dmresi |
⊢ dom ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } |
34 |
32 33
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → dom ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) |
35 |
|
stgrvtx |
⊢ ( 𝑁 ∈ ℕ0 → ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) ) |
36 |
35
|
pweqd |
⊢ ( 𝑁 ∈ ℕ0 → 𝒫 ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = 𝒫 ( 0 ... 𝑁 ) ) |
37 |
36
|
rabeqdv |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑒 ∈ 𝒫 ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) ∣ ( ♯ ‘ 𝑒 ) = 2 } = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
38 |
31 34 37
|
f1eq123d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) : dom ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) : { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } –1-1→ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
39 |
30 38
|
mpbird |
⊢ ( 𝑁 ∈ ℕ0 → ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) : dom ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
40 |
|
fvex |
⊢ ( StarGr ‘ 𝑁 ) ∈ V |
41 |
|
eqid |
⊢ ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) |
42 |
|
eqid |
⊢ ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) = ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) |
43 |
41 42
|
isusgrs |
⊢ ( ( StarGr ‘ 𝑁 ) ∈ V → ( ( StarGr ‘ 𝑁 ) ∈ USGraph ↔ ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) : dom ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
44 |
40 43
|
mp1i |
⊢ ( 𝑁 ∈ ℕ0 → ( ( StarGr ‘ 𝑁 ) ∈ USGraph ↔ ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) : dom ( iEdg ‘ ( StarGr ‘ 𝑁 ) ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
45 |
39 44
|
mpbird |
⊢ ( 𝑁 ∈ ℕ0 → ( StarGr ‘ 𝑁 ) ∈ USGraph ) |