Metamath Proof Explorer


Theorem isubgr3stgrlem5

Description: Lemma 5 for isubgr3stgr . (Contributed by AV, 24-Sep-2025)

Ref Expression
Hypotheses isubgr3stgr.v 𝑉 = ( Vtx ‘ 𝐺 )
isubgr3stgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
isubgr3stgr.c 𝐶 = ( 𝐺 ClNeighbVtx 𝑋 )
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = ( StarGr ‘ 𝑁 )
isubgr3stgr.w 𝑊 = ( Vtx ‘ 𝑆 )
isubgr3stgr.e 𝐸 = ( Edg ‘ 𝐺 )
isubgr3stgr.i 𝐼 = ( Edg ‘ ( 𝐺 ISubGr 𝐶 ) )
isubgr3stgr.h 𝐻 = ( 𝑖𝐼 ↦ ( 𝐹𝑖 ) )
Assertion isubgr3stgrlem5 ( ( 𝐹 : 𝐶𝑊𝑌𝐼 ) → ( 𝐻𝑌 ) = ( 𝐹𝑌 ) )

Proof

Step Hyp Ref Expression
1 isubgr3stgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isubgr3stgr.u 𝑈 = ( 𝐺 NeighbVtx 𝑋 )
3 isubgr3stgr.c 𝐶 = ( 𝐺 ClNeighbVtx 𝑋 )
4 isubgr3stgr.n 𝑁 ∈ ℕ0
5 isubgr3stgr.s 𝑆 = ( StarGr ‘ 𝑁 )
6 isubgr3stgr.w 𝑊 = ( Vtx ‘ 𝑆 )
7 isubgr3stgr.e 𝐸 = ( Edg ‘ 𝐺 )
8 isubgr3stgr.i 𝐼 = ( Edg ‘ ( 𝐺 ISubGr 𝐶 ) )
9 isubgr3stgr.h 𝐻 = ( 𝑖𝐼 ↦ ( 𝐹𝑖 ) )
10 9 a1i ( ( 𝐹 : 𝐶𝑊𝑌𝐼 ) → 𝐻 = ( 𝑖𝐼 ↦ ( 𝐹𝑖 ) ) )
11 imaeq2 ( 𝑖 = 𝑌 → ( 𝐹𝑖 ) = ( 𝐹𝑌 ) )
12 11 adantl ( ( ( 𝐹 : 𝐶𝑊𝑌𝐼 ) ∧ 𝑖 = 𝑌 ) → ( 𝐹𝑖 ) = ( 𝐹𝑌 ) )
13 simpr ( ( 𝐹 : 𝐶𝑊𝑌𝐼 ) → 𝑌𝐼 )
14 id ( 𝐹 : 𝐶𝑊𝐹 : 𝐶𝑊 )
15 3 ovexi 𝐶 ∈ V
16 15 a1i ( 𝐹 : 𝐶𝑊𝐶 ∈ V )
17 14 16 fexd ( 𝐹 : 𝐶𝑊𝐹 ∈ V )
18 17 adantr ( ( 𝐹 : 𝐶𝑊𝑌𝐼 ) → 𝐹 ∈ V )
19 18 imaexd ( ( 𝐹 : 𝐶𝑊𝑌𝐼 ) → ( 𝐹𝑌 ) ∈ V )
20 10 12 13 19 fvmptd ( ( 𝐹 : 𝐶𝑊𝑌𝐼 ) → ( 𝐻𝑌 ) = ( 𝐹𝑌 ) )