| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itcoval0mpt.f |
|- F = ( n e. A |-> B ) |
| 2 |
1
|
fveq2i |
|- ( IterComp ` F ) = ( IterComp ` ( n e. A |-> B ) ) |
| 3 |
2
|
fveq1i |
|- ( ( IterComp ` F ) ` 0 ) = ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) |
| 4 |
|
mptexg |
|- ( A e. V -> ( n e. A |-> B ) e. _V ) |
| 5 |
|
itcoval0 |
|- ( ( n e. A |-> B ) e. _V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) |
| 6 |
4 5
|
syl |
|- ( A e. V -> ( ( IterComp ` ( n e. A |-> B ) ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) |
| 7 |
3 6
|
eqtrid |
|- ( A e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom ( n e. A |-> B ) ) ) |
| 8 |
|
dmmptg |
|- ( A. n e. A B e. W -> dom ( n e. A |-> B ) = A ) |
| 9 |
8
|
reseq2d |
|- ( A. n e. A B e. W -> ( _I |` dom ( n e. A |-> B ) ) = ( _I |` A ) ) |
| 10 |
|
mptresid |
|- ( _I |` A ) = ( n e. A |-> n ) |
| 11 |
9 10
|
eqtrdi |
|- ( A. n e. A B e. W -> ( _I |` dom ( n e. A |-> B ) ) = ( n e. A |-> n ) ) |
| 12 |
7 11
|
sylan9eq |
|- ( ( A e. V /\ A. n e. A B e. W ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. A |-> n ) ) |