Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iuneq1i.1 | |- A = B |
|
Assertion | iuneq1i | |- U_ x e. A C = U_ x e. B C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1i.1 | |- A = B |
|
2 | 1 | eleq2i | |- ( x e. A <-> x e. B ) |
3 | 2 | anbi1i | |- ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) ) |
4 | 3 | rexbii2 | |- ( E. x e. A t e. C <-> E. x e. B t e. C ) |
5 | 4 | abbii | |- { t | E. x e. A t e. C } = { t | E. x e. B t e. C } |
6 | df-iun | |- U_ x e. A C = { t | E. x e. A t e. C } |
|
7 | df-iun | |- U_ x e. B C = { t | E. x e. B t e. C } |
|
8 | 5 6 7 | 3eqtr4i | |- U_ x e. A C = U_ x e. B C |