Metamath Proof Explorer


Theorem iuneq1i

Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypothesis iuneq1i.1
|- A = B
Assertion iuneq1i
|- U_ x e. A C = U_ x e. B C

Proof

Step Hyp Ref Expression
1 iuneq1i.1
 |-  A = B
2 1 eleq2i
 |-  ( x e. A <-> x e. B )
3 2 anbi1i
 |-  ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) )
4 3 rexbii2
 |-  ( E. x e. A t e. C <-> E. x e. B t e. C )
5 4 abbii
 |-  { t | E. x e. A t e. C } = { t | E. x e. B t e. C }
6 df-iun
 |-  U_ x e. A C = { t | E. x e. A t e. C }
7 df-iun
 |-  U_ x e. B C = { t | E. x e. B t e. C }
8 5 6 7 3eqtr4i
 |-  U_ x e. A C = U_ x e. B C