Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iuneq1i.1 | ⊢ 𝐴 = 𝐵 | |
Assertion | iuneq1i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1i.1 | ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
3 | 2 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶 ) ) |
4 | 3 | rexbii2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 ) |
5 | 4 | abbii | ⊢ { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 } |
6 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 } | |
7 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 } | |
8 | 5 6 7 | 3eqtr4i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 |