Metamath Proof Explorer


Theorem iuneq1i

Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypothesis iuneq1i.1 𝐴 = 𝐵
Assertion iuneq1i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶

Proof

Step Hyp Ref Expression
1 iuneq1i.1 𝐴 = 𝐵
2 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
3 2 anbi1i ( ( 𝑥𝐴𝑡𝐶 ) ↔ ( 𝑥𝐵𝑡𝐶 ) )
4 3 rexbii2 ( ∃ 𝑥𝐴 𝑡𝐶 ↔ ∃ 𝑥𝐵 𝑡𝐶 )
5 4 abbii { 𝑡 ∣ ∃ 𝑥𝐴 𝑡𝐶 } = { 𝑡 ∣ ∃ 𝑥𝐵 𝑡𝐶 }
6 df-iun 𝑥𝐴 𝐶 = { 𝑡 ∣ ∃ 𝑥𝐴 𝑡𝐶 }
7 df-iun 𝑥𝐵 𝐶 = { 𝑡 ∣ ∃ 𝑥𝐵 𝑡𝐶 }
8 5 6 7 3eqtr4i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶