Metamath Proof Explorer


Theorem iuneq1i

Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021) Remove DV conditions. (Revised by GG, 1-Sep-2025)

Ref Expression
Hypothesis iuneq1i.1 A = B
Assertion iuneq1i x A C = x B C

Proof

Step Hyp Ref Expression
1 iuneq1i.1 A = B
2 1 eleq2i x A x B
3 2 anbi1i x A t C x B t C
4 3 rexbii2 x A t C x B t C
5 4 abbii t | x A t C = t | x B t C
6 df-iun x A C = t | x A t C
7 df-iun x B C = t | x B t C
8 5 6 7 3eqtr4i x A C = x B C