Metamath Proof Explorer


Theorem jm2.27dlem1

Description: Lemma for rmydioph . Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypothesis jm2.27dlem1.1
|- A e. ( 1 ... B )
Assertion jm2.27dlem1
|- ( a = ( b |` ( 1 ... B ) ) -> ( a ` A ) = ( b ` A ) )

Proof

Step Hyp Ref Expression
1 jm2.27dlem1.1
 |-  A e. ( 1 ... B )
2 fveq1
 |-  ( a = ( b |` ( 1 ... B ) ) -> ( a ` A ) = ( ( b |` ( 1 ... B ) ) ` A ) )
3 fvres
 |-  ( A e. ( 1 ... B ) -> ( ( b |` ( 1 ... B ) ) ` A ) = ( b ` A ) )
4 1 3 ax-mp
 |-  ( ( b |` ( 1 ... B ) ) ` A ) = ( b ` A )
5 2 4 eqtrdi
 |-  ( a = ( b |` ( 1 ... B ) ) -> ( a ` A ) = ( b ` A ) )