Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> C C_ B ) |
2 |
|
sseqin2 |
|- ( C C_ B <-> ( B i^i C ) = C ) |
3 |
2
|
biimpi |
|- ( C C_ B -> ( B i^i C ) = C ) |
4 |
3
|
eqcomd |
|- ( C C_ B -> C = ( B i^i C ) ) |
5 |
|
k0004lem1 |
|- ( C = ( B i^i C ) -> ( ( F : A --> B /\ ( F " A ) C_ C ) <-> F : A --> C ) ) |
6 |
1 4 5
|
3syl |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> ( ( F : A --> B /\ ( F " A ) C_ C ) <-> F : A --> C ) ) |
7 |
|
simp2 |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> B e. V ) |
8 |
|
simp1 |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> A e. U ) |
9 |
7 8
|
elmapd |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> ( F e. ( B ^m A ) <-> F : A --> B ) ) |
10 |
9
|
anbi1d |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> ( ( F e. ( B ^m A ) /\ ( F " A ) C_ C ) <-> ( F : A --> B /\ ( F " A ) C_ C ) ) ) |
11 |
7 1
|
ssexd |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> C e. _V ) |
12 |
11 8
|
elmapd |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> ( F e. ( C ^m A ) <-> F : A --> C ) ) |
13 |
6 10 12
|
3bitr4d |
|- ( ( A e. U /\ B e. V /\ C C_ B ) -> ( ( F e. ( B ^m A ) /\ ( F " A ) C_ C ) <-> F e. ( C ^m A ) ) ) |