Metamath Proof Explorer


Theorem k0004lem2

Description: A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021)

Ref Expression
Assertion k0004lem2 AUBVCBFBAFACFCA

Proof

Step Hyp Ref Expression
1 simp3 AUBVCBCB
2 sseqin2 CBBC=C
3 2 biimpi CBBC=C
4 3 eqcomd CBC=BC
5 k0004lem1 C=BCF:ABFACF:AC
6 1 4 5 3syl AUBVCBF:ABFACF:AC
7 simp2 AUBVCBBV
8 simp1 AUBVCBAU
9 7 8 elmapd AUBVCBFBAF:AB
10 9 anbi1d AUBVCBFBAFACF:ABFAC
11 7 1 ssexd AUBVCBCV
12 11 8 elmapd AUBVCBFCAF:AC
13 6 10 12 3bitr4d AUBVCBFBAFACFCA