Metamath Proof Explorer


Theorem k0004lem1

Description: Application of ssin to range of a function. (Contributed by RP, 1-Apr-2021)

Ref Expression
Assertion k0004lem1 D=BCF:ABFACF:AD

Proof

Step Hyp Ref Expression
1 fnima FFnAFA=ranF
2 1 sseq1d FFnAFACranFC
3 2 anbi2d FFnAranFBFACranFBranFC
4 ssin ranFBranFCranFBC
5 3 4 bitrdi FFnAranFBFACranFBC
6 5 pm5.32i FFnAranFBFACFFnAranFBC
7 df-f F:ABFFnAranFB
8 7 anbi1i F:ABFACFFnAranFBFAC
9 anass FFnAranFBFACFFnAranFBFAC
10 8 9 bitri F:ABFACFFnAranFBFAC
11 df-f F:ABCFFnAranFBC
12 6 10 11 3bitr4i F:ABFACF:ABC
13 feq3 D=BCF:ADF:ABC
14 12 13 bitr4id D=BCF:ABFACF:AD