Metamath Proof Explorer


Theorem k0004lem3

Description: When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021)

Ref Expression
Assertion k0004lem3 AUBVCBFBAFA=CF=AC

Proof

Step Hyp Ref Expression
1 sneq FA=CFA=C
2 eqimss FA=CFAC
3 1 2 syl FA=CFAC
4 fvex FAV
5 4 snsssn FACFA=C
6 3 5 impbii FA=CFAC
7 elmapfn FBAFFnA
8 simpl1 AUBVCBFBAAU
9 snidg AUAA
10 8 9 syl AUBVCBFBAAA
11 fnsnfv FFnAAAFA=FA
12 7 10 11 syl2an2 AUBVCBFBAFA=FA
13 12 sseq1d AUBVCBFBAFACFAC
14 6 13 bitrid AUBVCBFBAFA=CFAC
15 14 pm5.32da AUBVCBFBAFA=CFBAFAC
16 snex AV
17 simp2 AUBVCBBV
18 simp3 AUBVCBCB
19 18 snssd AUBVCBCB
20 k0004lem2 AVBVCBFBAFACFCA
21 16 17 19 20 mp3an2i AUBVCBFBAFACFCA
22 snex CV
23 22 16 elmap FCAF:AC
24 fsng AUCBF:ACF=AC
25 24 3adant2 AUBVCBF:ACF=AC
26 23 25 bitrid AUBVCBFCAF=AC
27 15 21 26 3bitrd AUBVCBFBAFA=CF=AC