| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sneq |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐶 → { ( 𝐹 ‘ 𝐴 ) } = { 𝐶 } ) |
| 2 |
|
eqimss |
⊢ ( { ( 𝐹 ‘ 𝐴 ) } = { 𝐶 } → { ( 𝐹 ‘ 𝐴 ) } ⊆ { 𝐶 } ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐶 → { ( 𝐹 ‘ 𝐴 ) } ⊆ { 𝐶 } ) |
| 4 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 5 |
4
|
snsssn |
⊢ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ { 𝐶 } → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| 6 |
3 5
|
impbii |
⊢ ( ( 𝐹 ‘ 𝐴 ) = 𝐶 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ { 𝐶 } ) |
| 7 |
|
elmapfn |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) → 𝐹 Fn { 𝐴 } ) |
| 8 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ) → 𝐴 ∈ 𝑈 ) |
| 9 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑈 → 𝐴 ∈ { 𝐴 } ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ) → 𝐴 ∈ { 𝐴 } ) |
| 11 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn { 𝐴 } ∧ 𝐴 ∈ { 𝐴 } ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 12 |
7 10 11
|
syl2an2 |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ) → { ( 𝐹 ‘ 𝐴 ) } = ( 𝐹 “ { 𝐴 } ) ) |
| 13 |
12
|
sseq1d |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ) → ( { ( 𝐹 ‘ 𝐴 ) } ⊆ { 𝐶 } ↔ ( 𝐹 “ { 𝐴 } ) ⊆ { 𝐶 } ) ) |
| 14 |
6 13
|
bitrid |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ) → ( ( 𝐹 ‘ 𝐴 ) = 𝐶 ↔ ( 𝐹 “ { 𝐴 } ) ⊆ { 𝐶 } ) ) |
| 15 |
14
|
pm5.32da |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ∧ ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ↔ ( 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ∧ ( 𝐹 “ { 𝐴 } ) ⊆ { 𝐶 } ) ) ) |
| 16 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 17 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝐵 ∈ 𝑉 ) |
| 18 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
| 19 |
18
|
snssd |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → { 𝐶 } ⊆ 𝐵 ) |
| 20 |
|
k0004lem2 |
⊢ ( ( { 𝐴 } ∈ V ∧ 𝐵 ∈ 𝑉 ∧ { 𝐶 } ⊆ 𝐵 ) → ( ( 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ∧ ( 𝐹 “ { 𝐴 } ) ⊆ { 𝐶 } ) ↔ 𝐹 ∈ ( { 𝐶 } ↑m { 𝐴 } ) ) ) |
| 21 |
16 17 19 20
|
mp3an2i |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ∧ ( 𝐹 “ { 𝐴 } ) ⊆ { 𝐶 } ) ↔ 𝐹 ∈ ( { 𝐶 } ↑m { 𝐴 } ) ) ) |
| 22 |
|
snex |
⊢ { 𝐶 } ∈ V |
| 23 |
22 16
|
elmap |
⊢ ( 𝐹 ∈ ( { 𝐶 } ↑m { 𝐴 } ) ↔ 𝐹 : { 𝐴 } ⟶ { 𝐶 } ) |
| 24 |
|
fsng |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 : { 𝐴 } ⟶ { 𝐶 } ↔ 𝐹 = { 〈 𝐴 , 𝐶 〉 } ) ) |
| 25 |
24
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 : { 𝐴 } ⟶ { 𝐶 } ↔ 𝐹 = { 〈 𝐴 , 𝐶 〉 } ) ) |
| 26 |
23 25
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ∈ ( { 𝐶 } ↑m { 𝐴 } ) ↔ 𝐹 = { 〈 𝐴 , 𝐶 〉 } ) ) |
| 27 |
15 21 26
|
3bitrd |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐹 ∈ ( 𝐵 ↑m { 𝐴 } ) ∧ ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ↔ 𝐹 = { 〈 𝐴 , 𝐶 〉 } ) ) |