Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
2 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 + 1 ) = ( 𝑁 + 1 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 1 ... ( 𝑛 + 1 ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) = ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
5 |
3
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑛 = 𝑁 → ( Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 ↔ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 ) ) |
7 |
4 6
|
rabeqbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
8 |
|
ovex |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∈ V |
9 |
8
|
rabex |
⊢ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ∈ V |
10 |
7 1 9
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |