Metamath Proof Explorer


Theorem k0004val

Description: The topological simplex of dimension N is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
Assertion k0004val ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 } )

Proof

Step Hyp Ref Expression
1 k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
2 oveq1 ( 𝑛 = 𝑁 → ( 𝑛 + 1 ) = ( 𝑁 + 1 ) )
3 2 oveq2d ( 𝑛 = 𝑁 → ( 1 ... ( 𝑛 + 1 ) ) = ( 1 ... ( 𝑁 + 1 ) ) )
4 3 oveq2d ( 𝑛 = 𝑁 → ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) = ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
5 3 sumeq1d ( 𝑛 = 𝑁 → Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) )
6 5 eqeq1d ( 𝑛 = 𝑁 → ( Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 ↔ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 ) )
7 4 6 rabeqbidv ( 𝑛 = 𝑁 → { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
8 ovex ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∈ V
9 8 rabex { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 } ∈ V
10 7 1 9 fvmpt ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 } )