Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
2 |
1
|
k0004val |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
3 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∧ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 ) → 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
4 |
3
|
rabssdv |
⊢ ( 𝑁 ∈ ℕ0 → { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ⊆ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
5 |
2 4
|
eqsstrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) ⊆ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
6 |
|
reex |
⊢ ℝ ∈ V |
7 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
8 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
9 |
6 7 8
|
mp2an |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) |
10 |
5 9
|
sstrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |