Metamath Proof Explorer


Theorem k0004ss1

Description: The topological simplex of dimension N is a subset of the real vectors of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
Assertion k0004ss1 ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
2 1 k0004val ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
3 simp2 ( ( 𝑁 ∈ ℕ0𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∧ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 ) → 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
4 3 rabssdv ( 𝑁 ∈ ℕ0 → { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( 𝑡𝑘 ) = 1 } ⊆ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
5 2 4 eqsstrd ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
6 reex ℝ ∈ V
7 unitssre ( 0 [,] 1 ) ⊆ ℝ
8 mapss ( ( ℝ ∈ V ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
9 6 7 8 mp2an ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) )
10 5 9 sstrdi ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )