Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
2 |
1
|
k0004ss1 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
3 |
|
ssidd |
⊢ ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
4 |
|
elmapi |
⊢ ( 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑣 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ℝ ) |
5 |
4
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → 𝑣 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ℝ ) |
6 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
7 |
|
0red |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → 0 ∈ ℝ ) |
8 |
5 6 7
|
fdmfifsupp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → 𝑣 finSupp 0 ) |
9 |
3 8
|
ssrabdv |
⊢ ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ { 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ 𝑣 finSupp 0 } ) |
10 |
|
ovex |
⊢ ( 1 ... ( 𝑁 + 1 ) ) ∈ V |
11 |
|
eqid |
⊢ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) |
12 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) |
13 |
11 12
|
rrxbase |
⊢ ( ( 1 ... ( 𝑁 + 1 ) ) ∈ V → ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) = { 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ 𝑣 finSupp 0 } ) |
14 |
10 13
|
ax-mp |
⊢ ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) = { 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ 𝑣 finSupp 0 } |
15 |
9 14
|
sseqtrrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) ) |
16 |
2 15
|
sstrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) ⊆ ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) ) |