Metamath Proof Explorer


Theorem k0004ss2

Description: The topological simplex of dimension N is a subset of the base set of a real vector space of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
Assertion k0004ss2 ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
2 1 k0004ss1 ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
3 ssidd ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
4 elmapi ( 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) → 𝑣 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ℝ )
5 4 adantl ( ( 𝑁 ∈ ℕ0𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → 𝑣 : ( 1 ... ( 𝑁 + 1 ) ) ⟶ ℝ )
6 fzfid ( ( 𝑁 ∈ ℕ0𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → ( 1 ... ( 𝑁 + 1 ) ) ∈ Fin )
7 0red ( ( 𝑁 ∈ ℕ0𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → 0 ∈ ℝ )
8 5 6 7 fdmfifsupp ( ( 𝑁 ∈ ℕ0𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) → 𝑣 finSupp 0 )
9 3 8 ssrabdv ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ { 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ 𝑣 finSupp 0 } )
10 ovex ( 1 ... ( 𝑁 + 1 ) ) ∈ V
11 eqid ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) = ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) )
12 eqid ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) = ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) )
13 11 12 rrxbase ( ( 1 ... ( 𝑁 + 1 ) ) ∈ V → ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) = { 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ 𝑣 finSupp 0 } )
14 10 13 ax-mp ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) = { 𝑣 ∈ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ∣ 𝑣 finSupp 0 }
15 9 14 sseqtrrdi ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ⊆ ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) )
16 2 15 sstrd ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( Base ‘ ( ℝ^ ‘ ( 1 ... ( 𝑁 + 1 ) ) ) ) )