Metamath Proof Explorer


Theorem k0004ss3

Description: The topological simplex of dimension N is a subset of the base set of Euclidean space of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
Assertion k0004ss3 ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( Base ‘ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
2 1 k0004ss1 ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) )
3 peano2nn0 ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 )
4 eqid ( 𝔼hil ‘ ( 𝑁 + 1 ) ) = ( 𝔼hil ‘ ( 𝑁 + 1 ) )
5 4 ehlbase ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) = ( Base ‘ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) ) )
6 3 5 syl ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) = ( Base ‘ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) ) )
7 2 6 sseqtrd ( 𝑁 ∈ ℕ0 → ( 𝐴𝑁 ) ⊆ ( Base ‘ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) ) )