| Step |
Hyp |
Ref |
Expression |
| 1 |
|
k0004.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
| 2 |
1
|
k0004ss1 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) ⊆ ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) ) |
| 3 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 4 |
|
eqid |
⊢ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) = ( 𝔼hil ‘ ( 𝑁 + 1 ) ) |
| 5 |
4
|
ehlbase |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) = ( Base ‘ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ℝ ↑m ( 1 ... ( 𝑁 + 1 ) ) ) = ( Base ‘ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) ) ) |
| 7 |
2 6
|
sseqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ‘ 𝑁 ) ⊆ ( Base ‘ ( 𝔼hil ‘ ( 𝑁 + 1 ) ) ) ) |