Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
|- A = ( n e. NN0 |-> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } ) |
2 |
1
|
k0004ss1 |
|- ( N e. NN0 -> ( A ` N ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) ) |
3 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
4 |
|
eqid |
|- ( EEhil ` ( N + 1 ) ) = ( EEhil ` ( N + 1 ) ) |
5 |
4
|
ehlbase |
|- ( ( N + 1 ) e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) = ( Base ` ( EEhil ` ( N + 1 ) ) ) ) |
6 |
3 5
|
syl |
|- ( N e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) = ( Base ` ( EEhil ` ( N + 1 ) ) ) ) |
7 |
2 6
|
sseqtrd |
|- ( N e. NN0 -> ( A ` N ) C_ ( Base ` ( EEhil ` ( N + 1 ) ) ) ) |