Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
|- A = ( n e. NN0 |-> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } ) |
2 |
1
|
k0004val |
|- ( N e. NN0 -> ( A ` N ) = { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) | sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) = 1 } ) |
3 |
|
simp2 |
|- ( ( N e. NN0 /\ t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) /\ sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) = 1 ) -> t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) ) |
4 |
3
|
rabssdv |
|- ( N e. NN0 -> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) | sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) = 1 } C_ ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) ) |
5 |
2 4
|
eqsstrd |
|- ( N e. NN0 -> ( A ` N ) C_ ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) ) |
6 |
|
reex |
|- RR e. _V |
7 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
8 |
|
mapss |
|- ( ( RR e. _V /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) ) |
9 |
6 7 8
|
mp2an |
|- ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) |
10 |
5 9
|
sstrdi |
|- ( N e. NN0 -> ( A ` N ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) ) |