Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
|- A = ( n e. NN0 |-> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } ) |
2 |
|
oveq1 |
|- ( n = N -> ( n + 1 ) = ( N + 1 ) ) |
3 |
2
|
oveq2d |
|- ( n = N -> ( 1 ... ( n + 1 ) ) = ( 1 ... ( N + 1 ) ) ) |
4 |
3
|
oveq2d |
|- ( n = N -> ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) = ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) ) |
5 |
3
|
sumeq1d |
|- ( n = N -> sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) ) |
6 |
5
|
eqeq1d |
|- ( n = N -> ( sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 <-> sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) = 1 ) ) |
7 |
4 6
|
rabeqbidv |
|- ( n = N -> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } = { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) | sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) = 1 } ) |
8 |
|
ovex |
|- ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) e. _V |
9 |
8
|
rabex |
|- { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) | sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) = 1 } e. _V |
10 |
7 1 9
|
fvmpt |
|- ( N e. NN0 -> ( A ` N ) = { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( N + 1 ) ) ) | sum_ k e. ( 1 ... ( N + 1 ) ) ( t ` k ) = 1 } ) |