Metamath Proof Explorer


Theorem k0004ss2

Description: The topological simplex of dimension N is a subset of the base set of a real vector space of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a
|- A = ( n e. NN0 |-> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } )
Assertion k0004ss2
|- ( N e. NN0 -> ( A ` N ) C_ ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 k0004.a
 |-  A = ( n e. NN0 |-> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } )
2 1 k0004ss1
 |-  ( N e. NN0 -> ( A ` N ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) )
3 ssidd
 |-  ( N e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) )
4 elmapi
 |-  ( v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) -> v : ( 1 ... ( N + 1 ) ) --> RR )
5 4 adantl
 |-  ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> v : ( 1 ... ( N + 1 ) ) --> RR )
6 fzfid
 |-  ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> ( 1 ... ( N + 1 ) ) e. Fin )
7 0red
 |-  ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> 0 e. RR )
8 5 6 7 fdmfifsupp
 |-  ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> v finSupp 0 )
9 3 8 ssrabdv
 |-  ( N e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) C_ { v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) | v finSupp 0 } )
10 ovex
 |-  ( 1 ... ( N + 1 ) ) e. _V
11 eqid
 |-  ( RR^ ` ( 1 ... ( N + 1 ) ) ) = ( RR^ ` ( 1 ... ( N + 1 ) ) )
12 eqid
 |-  ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) = ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) )
13 11 12 rrxbase
 |-  ( ( 1 ... ( N + 1 ) ) e. _V -> ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) = { v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) | v finSupp 0 } )
14 10 13 ax-mp
 |-  ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) = { v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) | v finSupp 0 }
15 9 14 sseqtrrdi
 |-  ( N e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) C_ ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) )
16 2 15 sstrd
 |-  ( N e. NN0 -> ( A ` N ) C_ ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) )