Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
|- A = ( n e. NN0 |-> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } ) |
2 |
1
|
k0004ss1 |
|- ( N e. NN0 -> ( A ` N ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) ) |
3 |
|
ssidd |
|- ( N e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) C_ ( RR ^m ( 1 ... ( N + 1 ) ) ) ) |
4 |
|
elmapi |
|- ( v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) -> v : ( 1 ... ( N + 1 ) ) --> RR ) |
5 |
4
|
adantl |
|- ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> v : ( 1 ... ( N + 1 ) ) --> RR ) |
6 |
|
fzfid |
|- ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> ( 1 ... ( N + 1 ) ) e. Fin ) |
7 |
|
0red |
|- ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> 0 e. RR ) |
8 |
5 6 7
|
fdmfifsupp |
|- ( ( N e. NN0 /\ v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) ) -> v finSupp 0 ) |
9 |
3 8
|
ssrabdv |
|- ( N e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) C_ { v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) | v finSupp 0 } ) |
10 |
|
ovex |
|- ( 1 ... ( N + 1 ) ) e. _V |
11 |
|
eqid |
|- ( RR^ ` ( 1 ... ( N + 1 ) ) ) = ( RR^ ` ( 1 ... ( N + 1 ) ) ) |
12 |
|
eqid |
|- ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) = ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) |
13 |
11 12
|
rrxbase |
|- ( ( 1 ... ( N + 1 ) ) e. _V -> ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) = { v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) | v finSupp 0 } ) |
14 |
10 13
|
ax-mp |
|- ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) = { v e. ( RR ^m ( 1 ... ( N + 1 ) ) ) | v finSupp 0 } |
15 |
9 14
|
sseqtrrdi |
|- ( N e. NN0 -> ( RR ^m ( 1 ... ( N + 1 ) ) ) C_ ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) ) |
16 |
2 15
|
sstrd |
|- ( N e. NN0 -> ( A ` N ) C_ ( Base ` ( RR^ ` ( 1 ... ( N + 1 ) ) ) ) ) |