Metamath Proof Explorer


Theorem k0004ss2

Description: The topological simplex of dimension N is a subset of the base set of a real vector space of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a A=n0t011n+1|k=1n+1tk=1
Assertion k0004ss2 N0ANBasemsup

Proof

Step Hyp Ref Expression
1 k0004.a A=n0t011n+1|k=1n+1tk=1
2 1 k0004ss1 N0AN1N+1
3 ssidd N01N+11N+1
4 elmapi v1N+1v:1N+1
5 4 adantl N0v1N+1v:1N+1
6 fzfid N0v1N+11N+1Fin
7 0red N0v1N+10
8 5 6 7 fdmfifsupp N0v1N+1finSupp0v
9 3 8 ssrabdv N01N+1v1N+1|finSupp0v
10 ovex 1N+1V
11 eqid msup=msup
12 eqid Basemsup=Basemsup
13 11 12 rrxbase 1N+1VBasemsup=v1N+1|finSupp0v
14 10 13 ax-mp Basemsup=v1N+1|finSupp0v
15 9 14 sseqtrrdi N01N+1Basemsup
16 2 15 sstrd N0ANBasemsup