Metamath Proof Explorer


Theorem k0004ss2

Description: The topological simplex of dimension N is a subset of the base set of a real vector space of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
Assertion k0004ss2 N 0 A N Base 1 N + 1

Proof

Step Hyp Ref Expression
1 k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
2 1 k0004ss1 N 0 A N 1 N + 1
3 ssidd N 0 1 N + 1 1 N + 1
4 elmapi v 1 N + 1 v : 1 N + 1
5 4 adantl N 0 v 1 N + 1 v : 1 N + 1
6 fzfid N 0 v 1 N + 1 1 N + 1 Fin
7 0red N 0 v 1 N + 1 0
8 5 6 7 fdmfifsupp N 0 v 1 N + 1 finSupp 0 v
9 3 8 ssrabdv N 0 1 N + 1 v 1 N + 1 | finSupp 0 v
10 ovex 1 N + 1 V
11 eqid 1 N + 1 = 1 N + 1
12 eqid Base 1 N + 1 = Base 1 N + 1
13 11 12 rrxbase 1 N + 1 V Base 1 N + 1 = v 1 N + 1 | finSupp 0 v
14 10 13 ax-mp Base 1 N + 1 = v 1 N + 1 | finSupp 0 v
15 9 14 sseqtrrdi N 0 1 N + 1 Base 1 N + 1
16 2 15 sstrd N 0 A N Base 1 N + 1