Metamath Proof Explorer


Theorem k0004ss3

Description: The topological simplex of dimension N is a subset of the base set of Euclidean space of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a A=n0t011n+1|k=1n+1tk=1
Assertion k0004ss3 N0ANBase𝔼hilN+1

Proof

Step Hyp Ref Expression
1 k0004.a A=n0t011n+1|k=1n+1tk=1
2 1 k0004ss1 N0AN1N+1
3 peano2nn0 N0N+10
4 eqid 𝔼hilN+1=𝔼hilN+1
5 4 ehlbase N+101N+1=Base𝔼hilN+1
6 3 5 syl N01N+1=Base𝔼hilN+1
7 2 6 sseqtrd N0ANBase𝔼hilN+1