Metamath Proof Explorer


Theorem k0004ss1

Description: The topological simplex of dimension N is a subset of the real vectors of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
Assertion k0004ss1 N 0 A N 1 N + 1

Proof

Step Hyp Ref Expression
1 k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
2 1 k0004val N 0 A N = t 0 1 1 N + 1 | k = 1 N + 1 t k = 1
3 simp2 N 0 t 0 1 1 N + 1 k = 1 N + 1 t k = 1 t 0 1 1 N + 1
4 3 rabssdv N 0 t 0 1 1 N + 1 | k = 1 N + 1 t k = 1 0 1 1 N + 1
5 2 4 eqsstrd N 0 A N 0 1 1 N + 1
6 reex V
7 unitssre 0 1
8 mapss V 0 1 0 1 1 N + 1 1 N + 1
9 6 7 8 mp2an 0 1 1 N + 1 1 N + 1
10 5 9 sstrdi N 0 A N 1 N + 1