Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
|- A = ( n e. NN0 |-> { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( n + 1 ) ) ) | sum_ k e. ( 1 ... ( n + 1 ) ) ( t ` k ) = 1 } ) |
2 |
|
0nn0 |
|- 0 e. NN0 |
3 |
1
|
k0004val |
|- ( 0 e. NN0 -> ( A ` 0 ) = { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( 0 + 1 ) ) ) | sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 } ) |
4 |
2 3
|
ax-mp |
|- ( A ` 0 ) = { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( 0 + 1 ) ) ) | sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 } |
5 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
6 |
5
|
oveq2i |
|- ( 1 ... ( 0 + 1 ) ) = ( 1 ... 1 ) |
7 |
|
1z |
|- 1 e. ZZ |
8 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
9 |
7 8
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
10 |
6 9
|
eqtri |
|- ( 1 ... ( 0 + 1 ) ) = { 1 } |
11 |
10
|
oveq2i |
|- ( ( 0 [,] 1 ) ^m ( 1 ... ( 0 + 1 ) ) ) = ( ( 0 [,] 1 ) ^m { 1 } ) |
12 |
11
|
rabeqi |
|- { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( 0 + 1 ) ) ) | sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 } = { t e. ( ( 0 [,] 1 ) ^m { 1 } ) | sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 } |
13 |
10
|
sumeq1i |
|- sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = sum_ k e. { 1 } ( t ` k ) |
14 |
|
elmapi |
|- ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) -> t : { 1 } --> ( 0 [,] 1 ) ) |
15 |
|
fsn2g |
|- ( 1 e. ZZ -> ( t : { 1 } --> ( 0 [,] 1 ) <-> ( ( t ` 1 ) e. ( 0 [,] 1 ) /\ t = { <. 1 , ( t ` 1 ) >. } ) ) ) |
16 |
7 15
|
ax-mp |
|- ( t : { 1 } --> ( 0 [,] 1 ) <-> ( ( t ` 1 ) e. ( 0 [,] 1 ) /\ t = { <. 1 , ( t ` 1 ) >. } ) ) |
17 |
16
|
biimpi |
|- ( t : { 1 } --> ( 0 [,] 1 ) -> ( ( t ` 1 ) e. ( 0 [,] 1 ) /\ t = { <. 1 , ( t ` 1 ) >. } ) ) |
18 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
19 |
|
ax-resscn |
|- RR C_ CC |
20 |
18 19
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
21 |
20
|
sseli |
|- ( ( t ` 1 ) e. ( 0 [,] 1 ) -> ( t ` 1 ) e. CC ) |
22 |
21
|
adantr |
|- ( ( ( t ` 1 ) e. ( 0 [,] 1 ) /\ t = { <. 1 , ( t ` 1 ) >. } ) -> ( t ` 1 ) e. CC ) |
23 |
14 17 22
|
3syl |
|- ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) -> ( t ` 1 ) e. CC ) |
24 |
|
fveq2 |
|- ( k = 1 -> ( t ` k ) = ( t ` 1 ) ) |
25 |
24
|
sumsn |
|- ( ( 1 e. ZZ /\ ( t ` 1 ) e. CC ) -> sum_ k e. { 1 } ( t ` k ) = ( t ` 1 ) ) |
26 |
7 23 25
|
sylancr |
|- ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) -> sum_ k e. { 1 } ( t ` k ) = ( t ` 1 ) ) |
27 |
13 26
|
syl5eq |
|- ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) -> sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = ( t ` 1 ) ) |
28 |
27
|
eqeq1d |
|- ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) -> ( sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 <-> ( t ` 1 ) = 1 ) ) |
29 |
28
|
rabbiia |
|- { t e. ( ( 0 [,] 1 ) ^m { 1 } ) | sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 } = { t e. ( ( 0 [,] 1 ) ^m { 1 } ) | ( t ` 1 ) = 1 } |
30 |
12 29
|
eqtri |
|- { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( 0 + 1 ) ) ) | sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 } = { t e. ( ( 0 [,] 1 ) ^m { 1 } ) | ( t ` 1 ) = 1 } |
31 |
|
rabeqsn |
|- ( { t e. ( ( 0 [,] 1 ) ^m { 1 } ) | ( t ` 1 ) = 1 } = { { <. 1 , 1 >. } } <-> A. t ( ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) /\ ( t ` 1 ) = 1 ) <-> t = { <. 1 , 1 >. } ) ) |
32 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
33 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
34 |
|
k0004lem3 |
|- ( ( 1 e. ZZ /\ ( 0 [,] 1 ) e. _V /\ 1 e. ( 0 [,] 1 ) ) -> ( ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) /\ ( t ` 1 ) = 1 ) <-> t = { <. 1 , 1 >. } ) ) |
35 |
7 32 33 34
|
mp3an |
|- ( ( t e. ( ( 0 [,] 1 ) ^m { 1 } ) /\ ( t ` 1 ) = 1 ) <-> t = { <. 1 , 1 >. } ) |
36 |
31 35
|
mpgbir |
|- { t e. ( ( 0 [,] 1 ) ^m { 1 } ) | ( t ` 1 ) = 1 } = { { <. 1 , 1 >. } } |
37 |
30 36
|
eqtri |
|- { t e. ( ( 0 [,] 1 ) ^m ( 1 ... ( 0 + 1 ) ) ) | sum_ k e. ( 1 ... ( 0 + 1 ) ) ( t ` k ) = 1 } = { { <. 1 , 1 >. } } |
38 |
4 37
|
eqtri |
|- ( A ` 0 ) = { { <. 1 , 1 >. } } |