Metamath Proof Explorer


Theorem k0004val0

Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021)

Ref Expression
Hypothesis k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
Assertion k0004val0 ( 𝐴 ‘ 0 ) = { { ⟨ 1 , 1 ⟩ } }

Proof

Step Hyp Ref Expression
1 k0004.a 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
2 0nn0 0 ∈ ℕ0
3 1 k0004val ( 0 ∈ ℕ0 → ( 𝐴 ‘ 0 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 } )
4 2 3 ax-mp ( 𝐴 ‘ 0 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 }
5 0p1e1 ( 0 + 1 ) = 1
6 5 oveq2i ( 1 ... ( 0 + 1 ) ) = ( 1 ... 1 )
7 1z 1 ∈ ℤ
8 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
9 7 8 ax-mp ( 1 ... 1 ) = { 1 }
10 6 9 eqtri ( 1 ... ( 0 + 1 ) ) = { 1 }
11 10 oveq2i ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) = ( ( 0 [,] 1 ) ↑m { 1 } )
12 11 rabeqi { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 }
13 10 sumeq1i Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = Σ 𝑘 ∈ { 1 } ( 𝑡𝑘 )
14 elmapi ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) )
15 fsn2g ( 1 ∈ ℤ → ( 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) ↔ ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { ⟨ 1 , ( 𝑡 ‘ 1 ) ⟩ } ) ) )
16 7 15 ax-mp ( 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) ↔ ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { ⟨ 1 , ( 𝑡 ‘ 1 ) ⟩ } ) )
17 16 biimpi ( 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) → ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { ⟨ 1 , ( 𝑡 ‘ 1 ) ⟩ } ) )
18 unitssre ( 0 [,] 1 ) ⊆ ℝ
19 ax-resscn ℝ ⊆ ℂ
20 18 19 sstri ( 0 [,] 1 ) ⊆ ℂ
21 20 sseli ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) → ( 𝑡 ‘ 1 ) ∈ ℂ )
22 21 adantr ( ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { ⟨ 1 , ( 𝑡 ‘ 1 ) ⟩ } ) → ( 𝑡 ‘ 1 ) ∈ ℂ )
23 14 17 22 3syl ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → ( 𝑡 ‘ 1 ) ∈ ℂ )
24 fveq2 ( 𝑘 = 1 → ( 𝑡𝑘 ) = ( 𝑡 ‘ 1 ) )
25 24 sumsn ( ( 1 ∈ ℤ ∧ ( 𝑡 ‘ 1 ) ∈ ℂ ) → Σ 𝑘 ∈ { 1 } ( 𝑡𝑘 ) = ( 𝑡 ‘ 1 ) )
26 7 23 25 sylancr ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → Σ 𝑘 ∈ { 1 } ( 𝑡𝑘 ) = ( 𝑡 ‘ 1 ) )
27 13 26 syl5eq ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = ( 𝑡 ‘ 1 ) )
28 27 eqeq1d ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → ( Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 ↔ ( 𝑡 ‘ 1 ) = 1 ) )
29 28 rabbiia { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 }
30 12 29 eqtri { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 }
31 rabeqsn ( { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 } = { { ⟨ 1 , 1 ⟩ } } ↔ ∀ 𝑡 ( ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∧ ( 𝑡 ‘ 1 ) = 1 ) ↔ 𝑡 = { ⟨ 1 , 1 ⟩ } ) )
32 ovex ( 0 [,] 1 ) ∈ V
33 1elunit 1 ∈ ( 0 [,] 1 )
34 k0004lem3 ( ( 1 ∈ ℤ ∧ ( 0 [,] 1 ) ∈ V ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∧ ( 𝑡 ‘ 1 ) = 1 ) ↔ 𝑡 = { ⟨ 1 , 1 ⟩ } ) )
35 7 32 33 34 mp3an ( ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∧ ( 𝑡 ‘ 1 ) = 1 ) ↔ 𝑡 = { ⟨ 1 , 1 ⟩ } )
36 31 35 mpgbir { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 } = { { ⟨ 1 , 1 ⟩ } }
37 30 36 eqtri { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡𝑘 ) = 1 } = { { ⟨ 1 , 1 ⟩ } }
38 4 37 eqtri ( 𝐴 ‘ 0 ) = { { ⟨ 1 , 1 ⟩ } }