Step |
Hyp |
Ref |
Expression |
1 |
|
k0004.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ0 ↦ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 𝑛 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
3 |
1
|
k0004val |
⊢ ( 0 ∈ ℕ0 → ( 𝐴 ‘ 0 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } ) |
4 |
2 3
|
ax-mp |
⊢ ( 𝐴 ‘ 0 ) = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } |
5 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
6 |
5
|
oveq2i |
⊢ ( 1 ... ( 0 + 1 ) ) = ( 1 ... 1 ) |
7 |
|
1z |
⊢ 1 ∈ ℤ |
8 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
9 |
7 8
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
10 |
6 9
|
eqtri |
⊢ ( 1 ... ( 0 + 1 ) ) = { 1 } |
11 |
10
|
oveq2i |
⊢ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) = ( ( 0 [,] 1 ) ↑m { 1 } ) |
12 |
11
|
rabeqi |
⊢ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } |
13 |
10
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = Σ 𝑘 ∈ { 1 } ( 𝑡 ‘ 𝑘 ) |
14 |
|
elmapi |
⊢ ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) ) |
15 |
|
fsn2g |
⊢ ( 1 ∈ ℤ → ( 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) ↔ ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { 〈 1 , ( 𝑡 ‘ 1 ) 〉 } ) ) ) |
16 |
7 15
|
ax-mp |
⊢ ( 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) ↔ ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { 〈 1 , ( 𝑡 ‘ 1 ) 〉 } ) ) |
17 |
16
|
biimpi |
⊢ ( 𝑡 : { 1 } ⟶ ( 0 [,] 1 ) → ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { 〈 1 , ( 𝑡 ‘ 1 ) 〉 } ) ) |
18 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
20 |
18 19
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
21 |
20
|
sseli |
⊢ ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) → ( 𝑡 ‘ 1 ) ∈ ℂ ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑡 ‘ 1 ) ∈ ( 0 [,] 1 ) ∧ 𝑡 = { 〈 1 , ( 𝑡 ‘ 1 ) 〉 } ) → ( 𝑡 ‘ 1 ) ∈ ℂ ) |
23 |
14 17 22
|
3syl |
⊢ ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → ( 𝑡 ‘ 1 ) ∈ ℂ ) |
24 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑡 ‘ 𝑘 ) = ( 𝑡 ‘ 1 ) ) |
25 |
24
|
sumsn |
⊢ ( ( 1 ∈ ℤ ∧ ( 𝑡 ‘ 1 ) ∈ ℂ ) → Σ 𝑘 ∈ { 1 } ( 𝑡 ‘ 𝑘 ) = ( 𝑡 ‘ 1 ) ) |
26 |
7 23 25
|
sylancr |
⊢ ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → Σ 𝑘 ∈ { 1 } ( 𝑡 ‘ 𝑘 ) = ( 𝑡 ‘ 1 ) ) |
27 |
13 26
|
syl5eq |
⊢ ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = ( 𝑡 ‘ 1 ) ) |
28 |
27
|
eqeq1d |
⊢ ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) → ( Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 ↔ ( 𝑡 ‘ 1 ) = 1 ) ) |
29 |
28
|
rabbiia |
⊢ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 } |
30 |
12 29
|
eqtri |
⊢ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } = { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 } |
31 |
|
rabeqsn |
⊢ ( { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 } = { { 〈 1 , 1 〉 } } ↔ ∀ 𝑡 ( ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∧ ( 𝑡 ‘ 1 ) = 1 ) ↔ 𝑡 = { 〈 1 , 1 〉 } ) ) |
32 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
33 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
34 |
|
k0004lem3 |
⊢ ( ( 1 ∈ ℤ ∧ ( 0 [,] 1 ) ∈ V ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∧ ( 𝑡 ‘ 1 ) = 1 ) ↔ 𝑡 = { 〈 1 , 1 〉 } ) ) |
35 |
7 32 33 34
|
mp3an |
⊢ ( ( 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∧ ( 𝑡 ‘ 1 ) = 1 ) ↔ 𝑡 = { 〈 1 , 1 〉 } ) |
36 |
31 35
|
mpgbir |
⊢ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m { 1 } ) ∣ ( 𝑡 ‘ 1 ) = 1 } = { { 〈 1 , 1 〉 } } |
37 |
30 36
|
eqtri |
⊢ { 𝑡 ∈ ( ( 0 [,] 1 ) ↑m ( 1 ... ( 0 + 1 ) ) ) ∣ Σ 𝑘 ∈ ( 1 ... ( 0 + 1 ) ) ( 𝑡 ‘ 𝑘 ) = 1 } = { { 〈 1 , 1 〉 } } |
38 |
4 37
|
eqtri |
⊢ ( 𝐴 ‘ 0 ) = { { 〈 1 , 1 〉 } } |