| Step | Hyp | Ref | Expression | 
						
							| 1 |  | keephyp3v.1 |  |-  ( A = if ( ph , A , D ) -> ( rh <-> ch ) ) | 
						
							| 2 |  | keephyp3v.2 |  |-  ( B = if ( ph , B , R ) -> ( ch <-> th ) ) | 
						
							| 3 |  | keephyp3v.3 |  |-  ( C = if ( ph , C , S ) -> ( th <-> ta ) ) | 
						
							| 4 |  | keephyp3v.4 |  |-  ( D = if ( ph , A , D ) -> ( et <-> ze ) ) | 
						
							| 5 |  | keephyp3v.5 |  |-  ( R = if ( ph , B , R ) -> ( ze <-> si ) ) | 
						
							| 6 |  | keephyp3v.6 |  |-  ( S = if ( ph , C , S ) -> ( si <-> ta ) ) | 
						
							| 7 |  | keephyp3v.7 |  |-  rh | 
						
							| 8 |  | keephyp3v.8 |  |-  et | 
						
							| 9 |  | iftrue |  |-  ( ph -> if ( ph , A , D ) = A ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ph -> A = if ( ph , A , D ) ) | 
						
							| 11 | 10 1 | syl |  |-  ( ph -> ( rh <-> ch ) ) | 
						
							| 12 |  | iftrue |  |-  ( ph -> if ( ph , B , R ) = B ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ph -> B = if ( ph , B , R ) ) | 
						
							| 14 | 13 2 | syl |  |-  ( ph -> ( ch <-> th ) ) | 
						
							| 15 |  | iftrue |  |-  ( ph -> if ( ph , C , S ) = C ) | 
						
							| 16 | 15 | eqcomd |  |-  ( ph -> C = if ( ph , C , S ) ) | 
						
							| 17 | 16 3 | syl |  |-  ( ph -> ( th <-> ta ) ) | 
						
							| 18 | 11 14 17 | 3bitrd |  |-  ( ph -> ( rh <-> ta ) ) | 
						
							| 19 | 7 18 | mpbii |  |-  ( ph -> ta ) | 
						
							| 20 |  | iffalse |  |-  ( -. ph -> if ( ph , A , D ) = D ) | 
						
							| 21 | 20 | eqcomd |  |-  ( -. ph -> D = if ( ph , A , D ) ) | 
						
							| 22 | 21 4 | syl |  |-  ( -. ph -> ( et <-> ze ) ) | 
						
							| 23 |  | iffalse |  |-  ( -. ph -> if ( ph , B , R ) = R ) | 
						
							| 24 | 23 | eqcomd |  |-  ( -. ph -> R = if ( ph , B , R ) ) | 
						
							| 25 | 24 5 | syl |  |-  ( -. ph -> ( ze <-> si ) ) | 
						
							| 26 |  | iffalse |  |-  ( -. ph -> if ( ph , C , S ) = S ) | 
						
							| 27 | 26 | eqcomd |  |-  ( -. ph -> S = if ( ph , C , S ) ) | 
						
							| 28 | 27 6 | syl |  |-  ( -. ph -> ( si <-> ta ) ) | 
						
							| 29 | 22 25 28 | 3bitrd |  |-  ( -. ph -> ( et <-> ta ) ) | 
						
							| 30 | 8 29 | mpbii |  |-  ( -. ph -> ta ) | 
						
							| 31 | 19 30 | pm2.61i |  |-  ta |