Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latledi.b | |- B = ( Base ` K ) |
|
| latledi.l | |- .<_ = ( le ` K ) |
||
| latledi.j | |- .\/ = ( join ` K ) |
||
| latledi.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latmlej21 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y ./\ X ) .<_ ( X .\/ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latledi.b | |- B = ( Base ` K ) |
|
| 2 | latledi.l | |- .<_ = ( le ` K ) |
|
| 3 | latledi.j | |- .\/ = ( join ` K ) |
|
| 4 | latledi.m | |- ./\ = ( meet ` K ) |
|
| 5 | 1 4 | latmcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 6 | 5 | 3adant3r3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) = ( Y ./\ X ) ) |
| 7 | 1 2 3 4 | latmlej11 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ ( X .\/ Z ) ) |
| 8 | 6 7 | eqbrtrrd | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y ./\ X ) .<_ ( X .\/ Z ) ) |