| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lenelioc.1 |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | lenelioc.2 |  |-  ( ph -> B e. RR* ) | 
						
							| 3 |  | lenelioc.3 |  |-  ( ph -> C e. RR* ) | 
						
							| 4 |  | lenelioc.4 |  |-  ( ph -> C <_ A ) | 
						
							| 5 | 3 1 | xrlenltd |  |-  ( ph -> ( C <_ A <-> -. A < C ) ) | 
						
							| 6 | 4 5 | mpbid |  |-  ( ph -> -. A < C ) | 
						
							| 7 | 6 | intn3an2d |  |-  ( ph -> -. ( C e. RR* /\ A < C /\ C <_ B ) ) | 
						
							| 8 |  | elioc1 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) | 
						
							| 9 | 1 2 8 | syl2anc |  |-  ( ph -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) | 
						
							| 10 | 7 9 | mtbird |  |-  ( ph -> -. C e. ( A (,] B ) ) |