Description: A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lenelioc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| lenelioc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| lenelioc.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| lenelioc.4 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐴 ) | ||
| Assertion | lenelioc | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lenelioc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | lenelioc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | lenelioc.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 4 | lenelioc.4 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐴 ) | |
| 5 | 3 1 | xrlenltd | ⊢ ( 𝜑 → ( 𝐶 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐶 ) ) | 
| 6 | 4 5 | mpbid | ⊢ ( 𝜑 → ¬ 𝐴 < 𝐶 ) | 
| 7 | 6 | intn3an2d | ⊢ ( 𝜑 → ¬ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) | 
| 8 | elioc1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | 
| 10 | 7 9 | mtbird | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) |