| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Z/nZ ` P ) = ( Z/nZ ` P ) |
| 2 |
|
eqid |
|- ( Poly1 ` ( Z/nZ ` P ) ) = ( Poly1 ` ( Z/nZ ` P ) ) |
| 3 |
|
eqid |
|- ( Base ` ( Poly1 ` ( Z/nZ ` P ) ) ) = ( Base ` ( Poly1 ` ( Z/nZ ` P ) ) ) |
| 4 |
|
eqid |
|- ( deg1 ` ( Z/nZ ` P ) ) = ( deg1 ` ( Z/nZ ` P ) ) |
| 5 |
|
eqid |
|- ( eval1 ` ( Z/nZ ` P ) ) = ( eval1 ` ( Z/nZ ` P ) ) |
| 6 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) |
| 7 |
|
eqid |
|- ( var1 ` ( Z/nZ ` P ) ) = ( var1 ` ( Z/nZ ` P ) ) |
| 8 |
|
eqid |
|- ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) = ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) |
| 9 |
|
eqid |
|- ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) = ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) |
| 10 |
|
eqid |
|- ( ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) ( var1 ` ( Z/nZ ` P ) ) ) ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) = ( ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) ( var1 ` ( Z/nZ ` P ) ) ) ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) |
| 11 |
|
eqid |
|- ( ZRHom ` ( Z/nZ ` P ) ) = ( ZRHom ` ( Z/nZ ` P ) ) |
| 12 |
|
simp2 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> P e. ( Prime \ { 2 } ) ) |
| 13 |
|
eqid |
|- ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( ( ZRHom ` ( Z/nZ ` P ) ) ` ( y ^ 2 ) ) ) = ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( ( ZRHom ` ( Z/nZ ` P ) ) ` ( y ^ 2 ) ) ) |
| 14 |
|
simp1 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> A e. ZZ ) |
| 15 |
|
simp3 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> ( A /L P ) = 1 ) |
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lgsqrlem4 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) |