Metamath Proof Explorer


Theorem lgsqrlem5

Description: Lemma for lgsqr . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion lgsqrlem5 AP2A/LP=1xPx2A

Proof

Step Hyp Ref Expression
1 eqid /P=/P
2 eqid Poly1/P=Poly1/P
3 eqid BasePoly1/P=BasePoly1/P
4 eqid deg1/P=deg1/P
5 eqid eval1/P=eval1/P
6 eqid mulGrpPoly1/P=mulGrpPoly1/P
7 eqid var1/P=var1/P
8 eqid -Poly1/P=-Poly1/P
9 eqid 1Poly1/P=1Poly1/P
10 eqid P12mulGrpPoly1/Pvar1/P-Poly1/P1Poly1/P=P12mulGrpPoly1/Pvar1/P-Poly1/P1Poly1/P
11 eqid ℤRHom/P=ℤRHom/P
12 simp2 AP2A/LP=1P2
13 eqid y1P12ℤRHom/Py2=y1P12ℤRHom/Py2
14 simp1 AP2A/LP=1A
15 simp3 AP2A/LP=1A/LP=1
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lgsqrlem4 AP2A/LP=1xPx2A