Metamath Proof Explorer


Theorem lgsqrlem5

Description: Lemma for lgsqr . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion lgsqrlem5 ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → ∃ 𝑥 ∈ ℤ 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqid ( ℤ/nℤ ‘ 𝑃 ) = ( ℤ/nℤ ‘ 𝑃 )
2 eqid ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )
3 eqid ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) = ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) )
4 eqid ( deg1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( deg1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )
5 eqid ( eval1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( eval1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )
6 eqid ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) )
7 eqid ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) )
8 eqid ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) = ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) )
9 eqid ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) = ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) )
10 eqid ( ( ( ( 𝑃 − 1 ) / 2 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) = ( ( ( ( 𝑃 − 1 ) / 2 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) )
11 eqid ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) )
12 simp2 ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) )
13 eqid ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ‘ ( 𝑦 ↑ 2 ) ) ) = ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ‘ ( 𝑦 ↑ 2 ) ) )
14 simp1 ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → 𝐴 ∈ ℤ )
15 simp3 ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → ( 𝐴 /L 𝑃 ) = 1 )
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lgsqrlem4 ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → ∃ 𝑥 ∈ ℤ 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) )