| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑃 ) = ( ℤ/nℤ ‘ 𝑃 ) |
| 2 |
|
eqid |
⊢ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) = ( Base ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) |
| 4 |
|
eqid |
⊢ ( deg1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( deg1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) |
| 5 |
|
eqid |
⊢ ( eval1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( eval1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) |
| 6 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) |
| 7 |
|
eqid |
⊢ ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) |
| 8 |
|
eqid |
⊢ ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) = ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) = ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) |
| 10 |
|
eqid |
⊢ ( ( ( ( 𝑃 − 1 ) / 2 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) = ( ( ( ( 𝑃 − 1 ) / 2 ) ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) ( var1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( -g ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ( 1r ‘ ( Poly1 ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ) ) |
| 11 |
|
eqid |
⊢ ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) = ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) |
| 12 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 13 |
|
eqid |
⊢ ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ‘ ( 𝑦 ↑ 2 ) ) ) = ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( ( ℤRHom ‘ ( ℤ/nℤ ‘ 𝑃 ) ) ‘ ( 𝑦 ↑ 2 ) ) ) |
| 14 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → 𝐴 ∈ ℤ ) |
| 15 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → ( 𝐴 /L 𝑃 ) = 1 ) |
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lgsqrlem4 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ( 𝐴 /L 𝑃 ) = 1 ) → ∃ 𝑥 ∈ ℤ 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) ) |