| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsqr.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑃 ) |
| 2 |
|
lgsqr.s |
⊢ 𝑆 = ( Poly1 ‘ 𝑌 ) |
| 3 |
|
lgsqr.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
lgsqr.d |
⊢ 𝐷 = ( deg1 ‘ 𝑌 ) |
| 5 |
|
lgsqr.o |
⊢ 𝑂 = ( eval1 ‘ 𝑌 ) |
| 6 |
|
lgsqr.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 7 |
|
lgsqr.x |
⊢ 𝑋 = ( var1 ‘ 𝑌 ) |
| 8 |
|
lgsqr.m |
⊢ − = ( -g ‘ 𝑆 ) |
| 9 |
|
lgsqr.u |
⊢ 1 = ( 1r ‘ 𝑆 ) |
| 10 |
|
lgsqr.t |
⊢ 𝑇 = ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) |
| 11 |
|
lgsqr.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
| 12 |
|
lgsqr.1 |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 13 |
|
lgsqr.g |
⊢ 𝐺 = ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) ) |
| 14 |
|
lgsqr.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 15 |
|
lgsqr.4 |
⊢ ( 𝜑 → ( 𝐴 /L 𝑃 ) = 1 ) |
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lgsqrlem2 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
| 17 |
|
fvex |
⊢ ( 𝑂 ‘ 𝑇 ) ∈ V |
| 18 |
17
|
cnvex |
⊢ ◡ ( 𝑂 ‘ 𝑇 ) ∈ V |
| 19 |
18
|
imaex |
⊢ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ V |
| 20 |
19
|
f1dom |
⊢ ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≼ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
| 21 |
16 20
|
syl |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≼ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
| 22 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 24 |
12
|
eldifad |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 25 |
1
|
znfld |
⊢ ( 𝑃 ∈ ℙ → 𝑌 ∈ Field ) |
| 26 |
24 25
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Field ) |
| 27 |
|
fldidom |
⊢ ( 𝑌 ∈ Field → 𝑌 ∈ IDomn ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ IDomn ) |
| 29 |
|
isidom |
⊢ ( 𝑌 ∈ IDomn ↔ ( 𝑌 ∈ CRing ∧ 𝑌 ∈ Domn ) ) |
| 30 |
29
|
simplbi |
⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ CRing ) |
| 31 |
28 30
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
| 32 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 34 |
2
|
ply1ring |
⊢ ( 𝑌 ∈ Ring → 𝑆 ∈ Ring ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 36 |
|
ringgrp |
⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Grp ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 38 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
| 39 |
38 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 40 |
38
|
ringmgp |
⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 41 |
35 40
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 42 |
|
oddprm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
| 43 |
12 42
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
| 44 |
43
|
nnnn0d |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) |
| 45 |
7 2 3
|
vr1cl |
⊢ ( 𝑌 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 46 |
33 45
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 47 |
39 6 41 44 46
|
mulgnn0cld |
⊢ ( 𝜑 → ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ∈ 𝐵 ) |
| 48 |
3 9
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → 1 ∈ 𝐵 ) |
| 49 |
35 48
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 50 |
3 8
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ∈ 𝐵 ) |
| 51 |
37 47 49 50
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ∈ 𝐵 ) |
| 52 |
10 51
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
| 53 |
10
|
fveq2i |
⊢ ( 𝐷 ‘ 𝑇 ) = ( 𝐷 ‘ ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ) |
| 54 |
43
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ( 𝑃 − 1 ) / 2 ) ) |
| 55 |
|
eqid |
⊢ ( algSc ‘ 𝑆 ) = ( algSc ‘ 𝑆 ) |
| 56 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
| 57 |
2 55 56 9
|
ply1scl1 |
⊢ ( 𝑌 ∈ Ring → ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) = 1 ) |
| 58 |
33 57
|
syl |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) = 1 ) |
| 59 |
58
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) = ( 𝐷 ‘ 1 ) ) |
| 60 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 61 |
60 56
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
| 62 |
33 61
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
| 63 |
|
domnnzr |
⊢ ( 𝑌 ∈ Domn → 𝑌 ∈ NzRing ) |
| 64 |
29 63
|
simplbiim |
⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ NzRing ) |
| 65 |
28 64
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ NzRing ) |
| 66 |
56 22
|
nzrnz |
⊢ ( 𝑌 ∈ NzRing → ( 1r ‘ 𝑌 ) ≠ ( 0g ‘ 𝑌 ) ) |
| 67 |
65 66
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑌 ) ≠ ( 0g ‘ 𝑌 ) ) |
| 68 |
4 2 60 55 22
|
deg1scl |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 1r ‘ 𝑌 ) ≠ ( 0g ‘ 𝑌 ) ) → ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) = 0 ) |
| 69 |
33 62 67 68
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) = 0 ) |
| 70 |
59 69
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) = 0 ) |
| 71 |
4 2 7 38 6
|
deg1pw |
⊢ ( ( 𝑌 ∈ NzRing ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ) → ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
| 72 |
65 44 71
|
syl2anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
| 73 |
54 70 72
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) < ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) ) |
| 74 |
2 4 33 3 8 47 49 73
|
deg1sub |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) − 1 ) ) = ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) ) |
| 75 |
53 74
|
eqtrid |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = ( 𝐷 ‘ ( ( ( 𝑃 − 1 ) / 2 ) ↑ 𝑋 ) ) ) |
| 76 |
75 72
|
eqtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) = ( ( 𝑃 − 1 ) / 2 ) ) |
| 77 |
76 44
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑇 ) ∈ ℕ0 ) |
| 78 |
4 2 23 3
|
deg1nn0clb |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑇 ∈ 𝐵 ) → ( 𝑇 ≠ ( 0g ‘ 𝑆 ) ↔ ( 𝐷 ‘ 𝑇 ) ∈ ℕ0 ) ) |
| 79 |
33 52 78
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ≠ ( 0g ‘ 𝑆 ) ↔ ( 𝐷 ‘ 𝑇 ) ∈ ℕ0 ) ) |
| 80 |
77 79
|
mpbird |
⊢ ( 𝜑 → 𝑇 ≠ ( 0g ‘ 𝑆 ) ) |
| 81 |
2 3 4 5 22 23 28 52 80
|
fta1g |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( 𝐷 ‘ 𝑇 ) ) |
| 82 |
81 76
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) |
| 83 |
|
hashfz1 |
⊢ ( ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
| 84 |
44 83
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) = ( ( 𝑃 − 1 ) / 2 ) ) |
| 85 |
82 84
|
breqtrrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
| 86 |
|
hashbnd |
⊢ ( ( ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ V ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ0 ∧ ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) → ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ) |
| 87 |
19 44 82 86
|
mp3an2i |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ) |
| 88 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∈ Fin ) |
| 89 |
|
hashdom |
⊢ ( ( ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ∧ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ∈ Fin ) → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ↔ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
| 90 |
87 88 89
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ↔ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) ) |
| 91 |
85 90
|
mpbid |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 92 |
|
sbth |
⊢ ( ( ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≼ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∧ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ≼ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
| 93 |
21 91 92
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
| 94 |
|
f1finf1o |
⊢ ( ( ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ≈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∧ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∈ Fin ) → ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ↔ 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ) |
| 95 |
93 87 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ↔ 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) ) |
| 96 |
16 95
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
| 97 |
|
f1ocnv |
⊢ ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) → ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) –1-1-onto→ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 98 |
|
f1of |
⊢ ( ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) –1-1-onto→ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) → ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ⟶ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 99 |
96 97 98
|
3syl |
⊢ ( 𝜑 → ◡ 𝐺 : ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ⟶ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lgsqrlem3 |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐴 ) ∈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) |
| 101 |
99 100
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ) |
| 102 |
101
|
elfzelzd |
⊢ ( 𝜑 → ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ℤ ) |
| 103 |
|
fvoveq1 |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) = ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 104 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) = ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) |
| 105 |
104
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑦 ↑ 2 ) ) ) = ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) |
| 106 |
13 105
|
eqtri |
⊢ 𝐺 = ( 𝑥 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ↦ ( 𝐿 ‘ ( 𝑥 ↑ 2 ) ) ) |
| 107 |
|
fvex |
⊢ ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ∈ V |
| 108 |
103 106 107
|
fvmpt |
⊢ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 109 |
101 108
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 110 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) –1-1-onto→ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ∧ ( 𝐿 ‘ 𝐴 ) ∈ ( ◡ ( 𝑂 ‘ 𝑇 ) “ { ( 0g ‘ 𝑌 ) } ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ 𝐴 ) ) |
| 111 |
96 100 110
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ) = ( 𝐿 ‘ 𝐴 ) ) |
| 112 |
109 111
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) = ( 𝐿 ‘ 𝐴 ) ) |
| 113 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 114 |
24 113
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 115 |
114
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
| 116 |
|
zsqcl |
⊢ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ℤ → ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℤ ) |
| 117 |
102 116
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℤ ) |
| 118 |
1 11
|
zndvds |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) = ( 𝐿 ‘ 𝐴 ) ↔ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) ) |
| 119 |
115 117 14 118
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐿 ‘ ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) = ( 𝐿 ‘ 𝐴 ) ↔ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) ) |
| 120 |
112 119
|
mpbid |
⊢ ( 𝜑 → 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) |
| 121 |
|
oveq1 |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( 𝑥 ↑ 2 ) = ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 122 |
121
|
oveq1d |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( ( 𝑥 ↑ 2 ) − 𝐴 ) = ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) |
| 123 |
122
|
breq2d |
⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) → ( 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) ↔ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) ) |
| 124 |
123
|
rspcev |
⊢ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ∈ ℤ ∧ 𝑃 ∥ ( ( ( ◡ 𝐺 ‘ ( 𝐿 ‘ 𝐴 ) ) ↑ 2 ) − 𝐴 ) ) → ∃ 𝑥 ∈ ℤ 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) ) |
| 125 |
102 120 124
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ 𝑃 ∥ ( ( 𝑥 ↑ 2 ) − 𝐴 ) ) |