| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsqr.y |
|- Y = ( Z/nZ ` P ) |
| 2 |
|
lgsqr.s |
|- S = ( Poly1 ` Y ) |
| 3 |
|
lgsqr.b |
|- B = ( Base ` S ) |
| 4 |
|
lgsqr.d |
|- D = ( deg1 ` Y ) |
| 5 |
|
lgsqr.o |
|- O = ( eval1 ` Y ) |
| 6 |
|
lgsqr.e |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
| 7 |
|
lgsqr.x |
|- X = ( var1 ` Y ) |
| 8 |
|
lgsqr.m |
|- .- = ( -g ` S ) |
| 9 |
|
lgsqr.u |
|- .1. = ( 1r ` S ) |
| 10 |
|
lgsqr.t |
|- T = ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) |
| 11 |
|
lgsqr.l |
|- L = ( ZRHom ` Y ) |
| 12 |
|
lgsqr.1 |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 13 |
|
lgsqr.g |
|- G = ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( L ` ( y ^ 2 ) ) ) |
| 14 |
|
lgsqr.3 |
|- ( ph -> A e. ZZ ) |
| 15 |
|
lgsqr.4 |
|- ( ph -> ( A /L P ) = 1 ) |
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lgsqrlem2 |
|- ( ph -> G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 17 |
|
fvex |
|- ( O ` T ) e. _V |
| 18 |
17
|
cnvex |
|- `' ( O ` T ) e. _V |
| 19 |
18
|
imaex |
|- ( `' ( O ` T ) " { ( 0g ` Y ) } ) e. _V |
| 20 |
19
|
f1dom |
|- ( G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) -> ( 1 ... ( ( P - 1 ) / 2 ) ) ~<_ ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 21 |
16 20
|
syl |
|- ( ph -> ( 1 ... ( ( P - 1 ) / 2 ) ) ~<_ ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 22 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
| 23 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 24 |
12
|
eldifad |
|- ( ph -> P e. Prime ) |
| 25 |
1
|
znfld |
|- ( P e. Prime -> Y e. Field ) |
| 26 |
24 25
|
syl |
|- ( ph -> Y e. Field ) |
| 27 |
|
fldidom |
|- ( Y e. Field -> Y e. IDomn ) |
| 28 |
26 27
|
syl |
|- ( ph -> Y e. IDomn ) |
| 29 |
|
isidom |
|- ( Y e. IDomn <-> ( Y e. CRing /\ Y e. Domn ) ) |
| 30 |
29
|
simplbi |
|- ( Y e. IDomn -> Y e. CRing ) |
| 31 |
28 30
|
syl |
|- ( ph -> Y e. CRing ) |
| 32 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
| 33 |
31 32
|
syl |
|- ( ph -> Y e. Ring ) |
| 34 |
2
|
ply1ring |
|- ( Y e. Ring -> S e. Ring ) |
| 35 |
33 34
|
syl |
|- ( ph -> S e. Ring ) |
| 36 |
|
ringgrp |
|- ( S e. Ring -> S e. Grp ) |
| 37 |
35 36
|
syl |
|- ( ph -> S e. Grp ) |
| 38 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 39 |
38 3
|
mgpbas |
|- B = ( Base ` ( mulGrp ` S ) ) |
| 40 |
38
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 41 |
35 40
|
syl |
|- ( ph -> ( mulGrp ` S ) e. Mnd ) |
| 42 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 43 |
12 42
|
syl |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN ) |
| 44 |
43
|
nnnn0d |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 45 |
7 2 3
|
vr1cl |
|- ( Y e. Ring -> X e. B ) |
| 46 |
33 45
|
syl |
|- ( ph -> X e. B ) |
| 47 |
39 6 41 44 46
|
mulgnn0cld |
|- ( ph -> ( ( ( P - 1 ) / 2 ) .^ X ) e. B ) |
| 48 |
3 9
|
ringidcl |
|- ( S e. Ring -> .1. e. B ) |
| 49 |
35 48
|
syl |
|- ( ph -> .1. e. B ) |
| 50 |
3 8
|
grpsubcl |
|- ( ( S e. Grp /\ ( ( ( P - 1 ) / 2 ) .^ X ) e. B /\ .1. e. B ) -> ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) e. B ) |
| 51 |
37 47 49 50
|
syl3anc |
|- ( ph -> ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) e. B ) |
| 52 |
10 51
|
eqeltrid |
|- ( ph -> T e. B ) |
| 53 |
10
|
fveq2i |
|- ( D ` T ) = ( D ` ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) ) |
| 54 |
43
|
nngt0d |
|- ( ph -> 0 < ( ( P - 1 ) / 2 ) ) |
| 55 |
|
eqid |
|- ( algSc ` S ) = ( algSc ` S ) |
| 56 |
|
eqid |
|- ( 1r ` Y ) = ( 1r ` Y ) |
| 57 |
2 55 56 9
|
ply1scl1 |
|- ( Y e. Ring -> ( ( algSc ` S ) ` ( 1r ` Y ) ) = .1. ) |
| 58 |
33 57
|
syl |
|- ( ph -> ( ( algSc ` S ) ` ( 1r ` Y ) ) = .1. ) |
| 59 |
58
|
fveq2d |
|- ( ph -> ( D ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) = ( D ` .1. ) ) |
| 60 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 61 |
60 56
|
ringidcl |
|- ( Y e. Ring -> ( 1r ` Y ) e. ( Base ` Y ) ) |
| 62 |
33 61
|
syl |
|- ( ph -> ( 1r ` Y ) e. ( Base ` Y ) ) |
| 63 |
|
domnnzr |
|- ( Y e. Domn -> Y e. NzRing ) |
| 64 |
29 63
|
simplbiim |
|- ( Y e. IDomn -> Y e. NzRing ) |
| 65 |
28 64
|
syl |
|- ( ph -> Y e. NzRing ) |
| 66 |
56 22
|
nzrnz |
|- ( Y e. NzRing -> ( 1r ` Y ) =/= ( 0g ` Y ) ) |
| 67 |
65 66
|
syl |
|- ( ph -> ( 1r ` Y ) =/= ( 0g ` Y ) ) |
| 68 |
4 2 60 55 22
|
deg1scl |
|- ( ( Y e. Ring /\ ( 1r ` Y ) e. ( Base ` Y ) /\ ( 1r ` Y ) =/= ( 0g ` Y ) ) -> ( D ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) = 0 ) |
| 69 |
33 62 67 68
|
syl3anc |
|- ( ph -> ( D ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) = 0 ) |
| 70 |
59 69
|
eqtr3d |
|- ( ph -> ( D ` .1. ) = 0 ) |
| 71 |
4 2 7 38 6
|
deg1pw |
|- ( ( Y e. NzRing /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( D ` ( ( ( P - 1 ) / 2 ) .^ X ) ) = ( ( P - 1 ) / 2 ) ) |
| 72 |
65 44 71
|
syl2anc |
|- ( ph -> ( D ` ( ( ( P - 1 ) / 2 ) .^ X ) ) = ( ( P - 1 ) / 2 ) ) |
| 73 |
54 70 72
|
3brtr4d |
|- ( ph -> ( D ` .1. ) < ( D ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ) |
| 74 |
2 4 33 3 8 47 49 73
|
deg1sub |
|- ( ph -> ( D ` ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) ) = ( D ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ) |
| 75 |
53 74
|
eqtrid |
|- ( ph -> ( D ` T ) = ( D ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ) |
| 76 |
75 72
|
eqtrd |
|- ( ph -> ( D ` T ) = ( ( P - 1 ) / 2 ) ) |
| 77 |
76 44
|
eqeltrd |
|- ( ph -> ( D ` T ) e. NN0 ) |
| 78 |
4 2 23 3
|
deg1nn0clb |
|- ( ( Y e. Ring /\ T e. B ) -> ( T =/= ( 0g ` S ) <-> ( D ` T ) e. NN0 ) ) |
| 79 |
33 52 78
|
syl2anc |
|- ( ph -> ( T =/= ( 0g ` S ) <-> ( D ` T ) e. NN0 ) ) |
| 80 |
77 79
|
mpbird |
|- ( ph -> T =/= ( 0g ` S ) ) |
| 81 |
2 3 4 5 22 23 28 52 80
|
fta1g |
|- ( ph -> ( # ` ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) <_ ( D ` T ) ) |
| 82 |
81 76
|
breqtrd |
|- ( ph -> ( # ` ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) <_ ( ( P - 1 ) / 2 ) ) |
| 83 |
|
hashfz1 |
|- ( ( ( P - 1 ) / 2 ) e. NN0 -> ( # ` ( 1 ... ( ( P - 1 ) / 2 ) ) ) = ( ( P - 1 ) / 2 ) ) |
| 84 |
44 83
|
syl |
|- ( ph -> ( # ` ( 1 ... ( ( P - 1 ) / 2 ) ) ) = ( ( P - 1 ) / 2 ) ) |
| 85 |
82 84
|
breqtrrd |
|- ( ph -> ( # ` ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) <_ ( # ` ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) |
| 86 |
|
hashbnd |
|- ( ( ( `' ( O ` T ) " { ( 0g ` Y ) } ) e. _V /\ ( ( P - 1 ) / 2 ) e. NN0 /\ ( # ` ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) <_ ( ( P - 1 ) / 2 ) ) -> ( `' ( O ` T ) " { ( 0g ` Y ) } ) e. Fin ) |
| 87 |
19 44 82 86
|
mp3an2i |
|- ( ph -> ( `' ( O ` T ) " { ( 0g ` Y ) } ) e. Fin ) |
| 88 |
|
fzfid |
|- ( ph -> ( 1 ... ( ( P - 1 ) / 2 ) ) e. Fin ) |
| 89 |
|
hashdom |
|- ( ( ( `' ( O ` T ) " { ( 0g ` Y ) } ) e. Fin /\ ( 1 ... ( ( P - 1 ) / 2 ) ) e. Fin ) -> ( ( # ` ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) <_ ( # ` ( 1 ... ( ( P - 1 ) / 2 ) ) ) <-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ~<_ ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) |
| 90 |
87 88 89
|
syl2anc |
|- ( ph -> ( ( # ` ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) <_ ( # ` ( 1 ... ( ( P - 1 ) / 2 ) ) ) <-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ~<_ ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) |
| 91 |
85 90
|
mpbid |
|- ( ph -> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ~<_ ( 1 ... ( ( P - 1 ) / 2 ) ) ) |
| 92 |
|
sbth |
|- ( ( ( 1 ... ( ( P - 1 ) / 2 ) ) ~<_ ( `' ( O ` T ) " { ( 0g ` Y ) } ) /\ ( `' ( O ` T ) " { ( 0g ` Y ) } ) ~<_ ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( 1 ... ( ( P - 1 ) / 2 ) ) ~~ ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 93 |
21 91 92
|
syl2anc |
|- ( ph -> ( 1 ... ( ( P - 1 ) / 2 ) ) ~~ ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 94 |
|
f1finf1o |
|- ( ( ( 1 ... ( ( P - 1 ) / 2 ) ) ~~ ( `' ( O ` T ) " { ( 0g ` Y ) } ) /\ ( `' ( O ` T ) " { ( 0g ` Y ) } ) e. Fin ) -> ( G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) <-> G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) ) |
| 95 |
93 87 94
|
syl2anc |
|- ( ph -> ( G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) <-> G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) ) |
| 96 |
16 95
|
mpbid |
|- ( ph -> G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 97 |
|
f1ocnv |
|- ( G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) -> `' G : ( `' ( O ` T ) " { ( 0g ` Y ) } ) -1-1-onto-> ( 1 ... ( ( P - 1 ) / 2 ) ) ) |
| 98 |
|
f1of |
|- ( `' G : ( `' ( O ` T ) " { ( 0g ` Y ) } ) -1-1-onto-> ( 1 ... ( ( P - 1 ) / 2 ) ) -> `' G : ( `' ( O ` T ) " { ( 0g ` Y ) } ) --> ( 1 ... ( ( P - 1 ) / 2 ) ) ) |
| 99 |
96 97 98
|
3syl |
|- ( ph -> `' G : ( `' ( O ` T ) " { ( 0g ` Y ) } ) --> ( 1 ... ( ( P - 1 ) / 2 ) ) ) |
| 100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lgsqrlem3 |
|- ( ph -> ( L ` A ) e. ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 101 |
99 100
|
ffvelcdmd |
|- ( ph -> ( `' G ` ( L ` A ) ) e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) |
| 102 |
101
|
elfzelzd |
|- ( ph -> ( `' G ` ( L ` A ) ) e. ZZ ) |
| 103 |
|
fvoveq1 |
|- ( x = ( `' G ` ( L ` A ) ) -> ( L ` ( x ^ 2 ) ) = ( L ` ( ( `' G ` ( L ` A ) ) ^ 2 ) ) ) |
| 104 |
|
fvoveq1 |
|- ( y = x -> ( L ` ( y ^ 2 ) ) = ( L ` ( x ^ 2 ) ) ) |
| 105 |
104
|
cbvmptv |
|- ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( L ` ( y ^ 2 ) ) ) = ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( L ` ( x ^ 2 ) ) ) |
| 106 |
13 105
|
eqtri |
|- G = ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( L ` ( x ^ 2 ) ) ) |
| 107 |
|
fvex |
|- ( L ` ( ( `' G ` ( L ` A ) ) ^ 2 ) ) e. _V |
| 108 |
103 106 107
|
fvmpt |
|- ( ( `' G ` ( L ` A ) ) e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> ( G ` ( `' G ` ( L ` A ) ) ) = ( L ` ( ( `' G ` ( L ` A ) ) ^ 2 ) ) ) |
| 109 |
101 108
|
syl |
|- ( ph -> ( G ` ( `' G ` ( L ` A ) ) ) = ( L ` ( ( `' G ` ( L ` A ) ) ^ 2 ) ) ) |
| 110 |
|
f1ocnvfv2 |
|- ( ( G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-onto-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) /\ ( L ` A ) e. ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) -> ( G ` ( `' G ` ( L ` A ) ) ) = ( L ` A ) ) |
| 111 |
96 100 110
|
syl2anc |
|- ( ph -> ( G ` ( `' G ` ( L ` A ) ) ) = ( L ` A ) ) |
| 112 |
109 111
|
eqtr3d |
|- ( ph -> ( L ` ( ( `' G ` ( L ` A ) ) ^ 2 ) ) = ( L ` A ) ) |
| 113 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 114 |
24 113
|
syl |
|- ( ph -> P e. NN ) |
| 115 |
114
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 116 |
|
zsqcl |
|- ( ( `' G ` ( L ` A ) ) e. ZZ -> ( ( `' G ` ( L ` A ) ) ^ 2 ) e. ZZ ) |
| 117 |
102 116
|
syl |
|- ( ph -> ( ( `' G ` ( L ` A ) ) ^ 2 ) e. ZZ ) |
| 118 |
1 11
|
zndvds |
|- ( ( P e. NN0 /\ ( ( `' G ` ( L ` A ) ) ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( L ` ( ( `' G ` ( L ` A ) ) ^ 2 ) ) = ( L ` A ) <-> P || ( ( ( `' G ` ( L ` A ) ) ^ 2 ) - A ) ) ) |
| 119 |
115 117 14 118
|
syl3anc |
|- ( ph -> ( ( L ` ( ( `' G ` ( L ` A ) ) ^ 2 ) ) = ( L ` A ) <-> P || ( ( ( `' G ` ( L ` A ) ) ^ 2 ) - A ) ) ) |
| 120 |
112 119
|
mpbid |
|- ( ph -> P || ( ( ( `' G ` ( L ` A ) ) ^ 2 ) - A ) ) |
| 121 |
|
oveq1 |
|- ( x = ( `' G ` ( L ` A ) ) -> ( x ^ 2 ) = ( ( `' G ` ( L ` A ) ) ^ 2 ) ) |
| 122 |
121
|
oveq1d |
|- ( x = ( `' G ` ( L ` A ) ) -> ( ( x ^ 2 ) - A ) = ( ( ( `' G ` ( L ` A ) ) ^ 2 ) - A ) ) |
| 123 |
122
|
breq2d |
|- ( x = ( `' G ` ( L ` A ) ) -> ( P || ( ( x ^ 2 ) - A ) <-> P || ( ( ( `' G ` ( L ` A ) ) ^ 2 ) - A ) ) ) |
| 124 |
123
|
rspcev |
|- ( ( ( `' G ` ( L ` A ) ) e. ZZ /\ P || ( ( ( `' G ` ( L ` A ) ) ^ 2 ) - A ) ) -> E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) |
| 125 |
102 120 124
|
syl2anc |
|- ( ph -> E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) |