| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsqr.y |
|- Y = ( Z/nZ ` P ) |
| 2 |
|
lgsqr.s |
|- S = ( Poly1 ` Y ) |
| 3 |
|
lgsqr.b |
|- B = ( Base ` S ) |
| 4 |
|
lgsqr.d |
|- D = ( deg1 ` Y ) |
| 5 |
|
lgsqr.o |
|- O = ( eval1 ` Y ) |
| 6 |
|
lgsqr.e |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
| 7 |
|
lgsqr.x |
|- X = ( var1 ` Y ) |
| 8 |
|
lgsqr.m |
|- .- = ( -g ` S ) |
| 9 |
|
lgsqr.u |
|- .1. = ( 1r ` S ) |
| 10 |
|
lgsqr.t |
|- T = ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) |
| 11 |
|
lgsqr.l |
|- L = ( ZRHom ` Y ) |
| 12 |
|
lgsqr.1 |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 13 |
|
lgsqr.g |
|- G = ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( L ` ( y ^ 2 ) ) ) |
| 14 |
12
|
eldifad |
|- ( ph -> P e. Prime ) |
| 15 |
1
|
znfld |
|- ( P e. Prime -> Y e. Field ) |
| 16 |
14 15
|
syl |
|- ( ph -> Y e. Field ) |
| 17 |
|
fldidom |
|- ( Y e. Field -> Y e. IDomn ) |
| 18 |
16 17
|
syl |
|- ( ph -> Y e. IDomn ) |
| 19 |
|
isidom |
|- ( Y e. IDomn <-> ( Y e. CRing /\ Y e. Domn ) ) |
| 20 |
19
|
simplbi |
|- ( Y e. IDomn -> Y e. CRing ) |
| 21 |
18 20
|
syl |
|- ( ph -> Y e. CRing ) |
| 22 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
| 23 |
21 22
|
syl |
|- ( ph -> Y e. Ring ) |
| 24 |
11
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 25 |
23 24
|
syl |
|- ( ph -> L e. ( ZZring RingHom Y ) ) |
| 26 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 27 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 28 |
26 27
|
rhmf |
|- ( L e. ( ZZring RingHom Y ) -> L : ZZ --> ( Base ` Y ) ) |
| 29 |
25 28
|
syl |
|- ( ph -> L : ZZ --> ( Base ` Y ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> L : ZZ --> ( Base ` Y ) ) |
| 31 |
|
elfzelz |
|- ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> y e. ZZ ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> y e. ZZ ) |
| 33 |
|
zsqcl |
|- ( y e. ZZ -> ( y ^ 2 ) e. ZZ ) |
| 34 |
32 33
|
syl |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( y ^ 2 ) e. ZZ ) |
| 35 |
30 34
|
ffvelcdmd |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( L ` ( y ^ 2 ) ) e. ( Base ` Y ) ) |
| 36 |
12
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> P e. ( Prime \ { 2 } ) ) |
| 37 |
|
elfznn |
|- ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> y e. NN ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> y e. NN ) |
| 39 |
38
|
nncnd |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> y e. CC ) |
| 40 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 41 |
12 40
|
syl |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN ) |
| 42 |
41
|
nnnn0d |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 44 |
|
2nn0 |
|- 2 e. NN0 |
| 45 |
44
|
a1i |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> 2 e. NN0 ) |
| 46 |
39 43 45
|
expmuld |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( y ^ ( 2 x. ( ( P - 1 ) / 2 ) ) ) = ( ( y ^ 2 ) ^ ( ( P - 1 ) / 2 ) ) ) |
| 47 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 48 |
14 47
|
syl |
|- ( ph -> P e. NN ) |
| 49 |
48
|
nnred |
|- ( ph -> P e. RR ) |
| 50 |
|
peano2rem |
|- ( P e. RR -> ( P - 1 ) e. RR ) |
| 51 |
49 50
|
syl |
|- ( ph -> ( P - 1 ) e. RR ) |
| 52 |
51
|
recnd |
|- ( ph -> ( P - 1 ) e. CC ) |
| 53 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 54 |
|
2ne0 |
|- 2 =/= 0 |
| 55 |
54
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 56 |
52 53 55
|
divcan2d |
|- ( ph -> ( 2 x. ( ( P - 1 ) / 2 ) ) = ( P - 1 ) ) |
| 57 |
|
phiprm |
|- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
| 58 |
14 57
|
syl |
|- ( ph -> ( phi ` P ) = ( P - 1 ) ) |
| 59 |
56 58
|
eqtr4d |
|- ( ph -> ( 2 x. ( ( P - 1 ) / 2 ) ) = ( phi ` P ) ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( 2 x. ( ( P - 1 ) / 2 ) ) = ( phi ` P ) ) |
| 61 |
60
|
oveq2d |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( y ^ ( 2 x. ( ( P - 1 ) / 2 ) ) ) = ( y ^ ( phi ` P ) ) ) |
| 62 |
46 61
|
eqtr3d |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( y ^ 2 ) ^ ( ( P - 1 ) / 2 ) ) = ( y ^ ( phi ` P ) ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( ( y ^ 2 ) ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( y ^ ( phi ` P ) ) mod P ) ) |
| 64 |
14
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> P e. Prime ) |
| 65 |
64 47
|
syl |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> P e. NN ) |
| 66 |
48
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> P e. ZZ ) |
| 68 |
32 67
|
gcdcomd |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( y gcd P ) = ( P gcd y ) ) |
| 69 |
38
|
nnred |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> y e. RR ) |
| 70 |
51
|
rehalfcld |
|- ( ph -> ( ( P - 1 ) / 2 ) e. RR ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( P - 1 ) / 2 ) e. RR ) |
| 72 |
49
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> P e. RR ) |
| 73 |
|
elfzle2 |
|- ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> y <_ ( ( P - 1 ) / 2 ) ) |
| 74 |
73
|
adantl |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> y <_ ( ( P - 1 ) / 2 ) ) |
| 75 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 76 |
14 75
|
syl |
|- ( ph -> P e. ( ZZ>= ` 2 ) ) |
| 77 |
|
uz2m1nn |
|- ( P e. ( ZZ>= ` 2 ) -> ( P - 1 ) e. NN ) |
| 78 |
76 77
|
syl |
|- ( ph -> ( P - 1 ) e. NN ) |
| 79 |
78
|
nnrpd |
|- ( ph -> ( P - 1 ) e. RR+ ) |
| 80 |
|
rphalflt |
|- ( ( P - 1 ) e. RR+ -> ( ( P - 1 ) / 2 ) < ( P - 1 ) ) |
| 81 |
79 80
|
syl |
|- ( ph -> ( ( P - 1 ) / 2 ) < ( P - 1 ) ) |
| 82 |
49
|
ltm1d |
|- ( ph -> ( P - 1 ) < P ) |
| 83 |
70 51 49 81 82
|
lttrd |
|- ( ph -> ( ( P - 1 ) / 2 ) < P ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( P - 1 ) / 2 ) < P ) |
| 85 |
69 71 72 74 84
|
lelttrd |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> y < P ) |
| 86 |
69 72
|
ltnled |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( y < P <-> -. P <_ y ) ) |
| 87 |
85 86
|
mpbid |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> -. P <_ y ) |
| 88 |
|
dvdsle |
|- ( ( P e. ZZ /\ y e. NN ) -> ( P || y -> P <_ y ) ) |
| 89 |
67 38 88
|
syl2anc |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( P || y -> P <_ y ) ) |
| 90 |
87 89
|
mtod |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> -. P || y ) |
| 91 |
|
coprm |
|- ( ( P e. Prime /\ y e. ZZ ) -> ( -. P || y <-> ( P gcd y ) = 1 ) ) |
| 92 |
64 32 91
|
syl2anc |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( -. P || y <-> ( P gcd y ) = 1 ) ) |
| 93 |
90 92
|
mpbid |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( P gcd y ) = 1 ) |
| 94 |
68 93
|
eqtrd |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( y gcd P ) = 1 ) |
| 95 |
|
eulerth |
|- ( ( P e. NN /\ y e. ZZ /\ ( y gcd P ) = 1 ) -> ( ( y ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 96 |
65 32 94 95
|
syl3anc |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( y ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 97 |
63 96
|
eqtrd |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( ( y ^ 2 ) ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( 1 mod P ) ) |
| 98 |
1 2 3 4 5 6 7 8 9 10 11 36 34 97
|
lgsqrlem1 |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( O ` T ) ` ( L ` ( y ^ 2 ) ) ) = ( 0g ` Y ) ) |
| 99 |
|
eqid |
|- ( Y ^s ( Base ` Y ) ) = ( Y ^s ( Base ` Y ) ) |
| 100 |
|
eqid |
|- ( Base ` ( Y ^s ( Base ` Y ) ) ) = ( Base ` ( Y ^s ( Base ` Y ) ) ) |
| 101 |
|
fvexd |
|- ( ph -> ( Base ` Y ) e. _V ) |
| 102 |
5 2 99 27
|
evl1rhm |
|- ( Y e. CRing -> O e. ( S RingHom ( Y ^s ( Base ` Y ) ) ) ) |
| 103 |
21 102
|
syl |
|- ( ph -> O e. ( S RingHom ( Y ^s ( Base ` Y ) ) ) ) |
| 104 |
3 100
|
rhmf |
|- ( O e. ( S RingHom ( Y ^s ( Base ` Y ) ) ) -> O : B --> ( Base ` ( Y ^s ( Base ` Y ) ) ) ) |
| 105 |
103 104
|
syl |
|- ( ph -> O : B --> ( Base ` ( Y ^s ( Base ` Y ) ) ) ) |
| 106 |
2
|
ply1ring |
|- ( Y e. Ring -> S e. Ring ) |
| 107 |
23 106
|
syl |
|- ( ph -> S e. Ring ) |
| 108 |
|
ringgrp |
|- ( S e. Ring -> S e. Grp ) |
| 109 |
107 108
|
syl |
|- ( ph -> S e. Grp ) |
| 110 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 111 |
110 3
|
mgpbas |
|- B = ( Base ` ( mulGrp ` S ) ) |
| 112 |
110
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
| 113 |
107 112
|
syl |
|- ( ph -> ( mulGrp ` S ) e. Mnd ) |
| 114 |
7 2 3
|
vr1cl |
|- ( Y e. Ring -> X e. B ) |
| 115 |
23 114
|
syl |
|- ( ph -> X e. B ) |
| 116 |
111 6 113 42 115
|
mulgnn0cld |
|- ( ph -> ( ( ( P - 1 ) / 2 ) .^ X ) e. B ) |
| 117 |
3 9
|
ringidcl |
|- ( S e. Ring -> .1. e. B ) |
| 118 |
107 117
|
syl |
|- ( ph -> .1. e. B ) |
| 119 |
3 8
|
grpsubcl |
|- ( ( S e. Grp /\ ( ( ( P - 1 ) / 2 ) .^ X ) e. B /\ .1. e. B ) -> ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) e. B ) |
| 120 |
109 116 118 119
|
syl3anc |
|- ( ph -> ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) e. B ) |
| 121 |
10 120
|
eqeltrid |
|- ( ph -> T e. B ) |
| 122 |
105 121
|
ffvelcdmd |
|- ( ph -> ( O ` T ) e. ( Base ` ( Y ^s ( Base ` Y ) ) ) ) |
| 123 |
99 27 100 16 101 122
|
pwselbas |
|- ( ph -> ( O ` T ) : ( Base ` Y ) --> ( Base ` Y ) ) |
| 124 |
123
|
ffnd |
|- ( ph -> ( O ` T ) Fn ( Base ` Y ) ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( O ` T ) Fn ( Base ` Y ) ) |
| 126 |
|
fniniseg |
|- ( ( O ` T ) Fn ( Base ` Y ) -> ( ( L ` ( y ^ 2 ) ) e. ( `' ( O ` T ) " { ( 0g ` Y ) } ) <-> ( ( L ` ( y ^ 2 ) ) e. ( Base ` Y ) /\ ( ( O ` T ) ` ( L ` ( y ^ 2 ) ) ) = ( 0g ` Y ) ) ) ) |
| 127 |
125 126
|
syl |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( L ` ( y ^ 2 ) ) e. ( `' ( O ` T ) " { ( 0g ` Y ) } ) <-> ( ( L ` ( y ^ 2 ) ) e. ( Base ` Y ) /\ ( ( O ` T ) ` ( L ` ( y ^ 2 ) ) ) = ( 0g ` Y ) ) ) ) |
| 128 |
35 98 127
|
mpbir2and |
|- ( ( ph /\ y e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( L ` ( y ^ 2 ) ) e. ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 129 |
128 13
|
fmptd |
|- ( ph -> G : ( 1 ... ( ( P - 1 ) / 2 ) ) --> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |
| 130 |
|
fvoveq1 |
|- ( y = x -> ( L ` ( y ^ 2 ) ) = ( L ` ( x ^ 2 ) ) ) |
| 131 |
|
fvex |
|- ( L ` ( x ^ 2 ) ) e. _V |
| 132 |
130 13 131
|
fvmpt |
|- ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> ( G ` x ) = ( L ` ( x ^ 2 ) ) ) |
| 133 |
132
|
ad2antrl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( G ` x ) = ( L ` ( x ^ 2 ) ) ) |
| 134 |
|
fvoveq1 |
|- ( y = z -> ( L ` ( y ^ 2 ) ) = ( L ` ( z ^ 2 ) ) ) |
| 135 |
|
fvex |
|- ( L ` ( z ^ 2 ) ) e. _V |
| 136 |
134 13 135
|
fvmpt |
|- ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> ( G ` z ) = ( L ` ( z ^ 2 ) ) ) |
| 137 |
136
|
ad2antll |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( G ` z ) = ( L ` ( z ^ 2 ) ) ) |
| 138 |
133 137
|
eqeq12d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( G ` x ) = ( G ` z ) <-> ( L ` ( x ^ 2 ) ) = ( L ` ( z ^ 2 ) ) ) ) |
| 139 |
48
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 140 |
139
|
adantr |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> P e. NN0 ) |
| 141 |
|
elfzelz |
|- ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> x e. ZZ ) |
| 142 |
141
|
ad2antrl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> x e. ZZ ) |
| 143 |
|
zsqcl |
|- ( x e. ZZ -> ( x ^ 2 ) e. ZZ ) |
| 144 |
142 143
|
syl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x ^ 2 ) e. ZZ ) |
| 145 |
|
elfzelz |
|- ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> z e. ZZ ) |
| 146 |
145
|
ad2antll |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> z e. ZZ ) |
| 147 |
|
zsqcl |
|- ( z e. ZZ -> ( z ^ 2 ) e. ZZ ) |
| 148 |
146 147
|
syl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( z ^ 2 ) e. ZZ ) |
| 149 |
1 11
|
zndvds |
|- ( ( P e. NN0 /\ ( x ^ 2 ) e. ZZ /\ ( z ^ 2 ) e. ZZ ) -> ( ( L ` ( x ^ 2 ) ) = ( L ` ( z ^ 2 ) ) <-> P || ( ( x ^ 2 ) - ( z ^ 2 ) ) ) ) |
| 150 |
140 144 148 149
|
syl3anc |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( L ` ( x ^ 2 ) ) = ( L ` ( z ^ 2 ) ) <-> P || ( ( x ^ 2 ) - ( z ^ 2 ) ) ) ) |
| 151 |
|
elfznn |
|- ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> x e. NN ) |
| 152 |
151
|
ad2antrl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> x e. NN ) |
| 153 |
152
|
nncnd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> x e. CC ) |
| 154 |
|
elfznn |
|- ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> z e. NN ) |
| 155 |
154
|
ad2antll |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> z e. NN ) |
| 156 |
155
|
nncnd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> z e. CC ) |
| 157 |
|
subsq |
|- ( ( x e. CC /\ z e. CC ) -> ( ( x ^ 2 ) - ( z ^ 2 ) ) = ( ( x + z ) x. ( x - z ) ) ) |
| 158 |
153 156 157
|
syl2anc |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( x ^ 2 ) - ( z ^ 2 ) ) = ( ( x + z ) x. ( x - z ) ) ) |
| 159 |
158
|
breq2d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P || ( ( x ^ 2 ) - ( z ^ 2 ) ) <-> P || ( ( x + z ) x. ( x - z ) ) ) ) |
| 160 |
138 150 159
|
3bitrd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( G ` x ) = ( G ` z ) <-> P || ( ( x + z ) x. ( x - z ) ) ) ) |
| 161 |
14
|
adantr |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> P e. Prime ) |
| 162 |
142 146
|
zaddcld |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x + z ) e. ZZ ) |
| 163 |
142 146
|
zsubcld |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x - z ) e. ZZ ) |
| 164 |
|
euclemma |
|- ( ( P e. Prime /\ ( x + z ) e. ZZ /\ ( x - z ) e. ZZ ) -> ( P || ( ( x + z ) x. ( x - z ) ) <-> ( P || ( x + z ) \/ P || ( x - z ) ) ) ) |
| 165 |
161 162 163 164
|
syl3anc |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P || ( ( x + z ) x. ( x - z ) ) <-> ( P || ( x + z ) \/ P || ( x - z ) ) ) ) |
| 166 |
161 47
|
syl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> P e. NN ) |
| 167 |
166
|
nnzd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> P e. ZZ ) |
| 168 |
152 155
|
nnaddcld |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x + z ) e. NN ) |
| 169 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( x + z ) e. NN ) -> ( P || ( x + z ) -> P <_ ( x + z ) ) ) |
| 170 |
167 168 169
|
syl2anc |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P || ( x + z ) -> P <_ ( x + z ) ) ) |
| 171 |
168
|
nnred |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x + z ) e. RR ) |
| 172 |
166
|
nnred |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> P e. RR ) |
| 173 |
172 50
|
syl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P - 1 ) e. RR ) |
| 174 |
152
|
nnred |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> x e. RR ) |
| 175 |
155
|
nnred |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> z e. RR ) |
| 176 |
70
|
adantr |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( P - 1 ) / 2 ) e. RR ) |
| 177 |
|
elfzle2 |
|- ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> x <_ ( ( P - 1 ) / 2 ) ) |
| 178 |
177
|
ad2antrl |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> x <_ ( ( P - 1 ) / 2 ) ) |
| 179 |
|
elfzle2 |
|- ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> z <_ ( ( P - 1 ) / 2 ) ) |
| 180 |
179
|
ad2antll |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> z <_ ( ( P - 1 ) / 2 ) ) |
| 181 |
174 175 176 176 178 180
|
le2addd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x + z ) <_ ( ( ( P - 1 ) / 2 ) + ( ( P - 1 ) / 2 ) ) ) |
| 182 |
52
|
adantr |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P - 1 ) e. CC ) |
| 183 |
182
|
2halvesd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( ( P - 1 ) / 2 ) + ( ( P - 1 ) / 2 ) ) = ( P - 1 ) ) |
| 184 |
181 183
|
breqtrd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x + z ) <_ ( P - 1 ) ) |
| 185 |
172
|
ltm1d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P - 1 ) < P ) |
| 186 |
171 173 172 184 185
|
lelttrd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x + z ) < P ) |
| 187 |
171 172
|
ltnled |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( x + z ) < P <-> -. P <_ ( x + z ) ) ) |
| 188 |
186 187
|
mpbid |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> -. P <_ ( x + z ) ) |
| 189 |
188
|
pm2.21d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P <_ ( x + z ) -> x = z ) ) |
| 190 |
170 189
|
syld |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P || ( x + z ) -> x = z ) ) |
| 191 |
|
moddvds |
|- ( ( P e. NN /\ x e. ZZ /\ z e. ZZ ) -> ( ( x mod P ) = ( z mod P ) <-> P || ( x - z ) ) ) |
| 192 |
166 142 146 191
|
syl3anc |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( x mod P ) = ( z mod P ) <-> P || ( x - z ) ) ) |
| 193 |
166
|
nnrpd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> P e. RR+ ) |
| 194 |
152
|
nnnn0d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> x e. NN0 ) |
| 195 |
194
|
nn0ge0d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> 0 <_ x ) |
| 196 |
83
|
adantr |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( P - 1 ) / 2 ) < P ) |
| 197 |
174 176 172 178 196
|
lelttrd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> x < P ) |
| 198 |
|
modid |
|- ( ( ( x e. RR /\ P e. RR+ ) /\ ( 0 <_ x /\ x < P ) ) -> ( x mod P ) = x ) |
| 199 |
174 193 195 197 198
|
syl22anc |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( x mod P ) = x ) |
| 200 |
155
|
nnnn0d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> z e. NN0 ) |
| 201 |
200
|
nn0ge0d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> 0 <_ z ) |
| 202 |
175 176 172 180 196
|
lelttrd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> z < P ) |
| 203 |
|
modid |
|- ( ( ( z e. RR /\ P e. RR+ ) /\ ( 0 <_ z /\ z < P ) ) -> ( z mod P ) = z ) |
| 204 |
175 193 201 202 203
|
syl22anc |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( z mod P ) = z ) |
| 205 |
199 204
|
eqeq12d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( x mod P ) = ( z mod P ) <-> x = z ) ) |
| 206 |
192 205
|
bitr3d |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P || ( x - z ) <-> x = z ) ) |
| 207 |
206
|
biimpd |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P || ( x - z ) -> x = z ) ) |
| 208 |
190 207
|
jaod |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( P || ( x + z ) \/ P || ( x - z ) ) -> x = z ) ) |
| 209 |
165 208
|
sylbid |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( P || ( ( x + z ) x. ( x - z ) ) -> x = z ) ) |
| 210 |
160 209
|
sylbid |
|- ( ( ph /\ ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) -> ( ( G ` x ) = ( G ` z ) -> x = z ) ) |
| 211 |
210
|
ralrimivva |
|- ( ph -> A. x e. ( 1 ... ( ( P - 1 ) / 2 ) ) A. z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( ( G ` x ) = ( G ` z ) -> x = z ) ) |
| 212 |
|
dff13 |
|- ( G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) <-> ( G : ( 1 ... ( ( P - 1 ) / 2 ) ) --> ( `' ( O ` T ) " { ( 0g ` Y ) } ) /\ A. x e. ( 1 ... ( ( P - 1 ) / 2 ) ) A. z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( ( G ` x ) = ( G ` z ) -> x = z ) ) ) |
| 213 |
129 211 212
|
sylanbrc |
|- ( ph -> G : ( 1 ... ( ( P - 1 ) / 2 ) ) -1-1-> ( `' ( O ` T ) " { ( 0g ` Y ) } ) ) |