| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlabl.l |
|- L = ( LIdeal ` R ) |
| 2 |
|
lidlabl.i |
|- I = ( R |`s U ) |
| 3 |
|
zlidlring.b |
|- B = ( Base ` R ) |
| 4 |
|
zlidlring.0 |
|- .0. = ( 0g ` R ) |
| 5 |
|
neanior |
|- ( ( U =/= { .0. } /\ U =/= B ) <-> -. ( U = { .0. } \/ U = B ) ) |
| 6 |
5
|
biimpi |
|- ( ( U =/= { .0. } /\ U =/= B ) -> -. ( U = { .0. } \/ U = B ) ) |
| 7 |
6
|
3adant1 |
|- ( ( U e. L /\ U =/= { .0. } /\ U =/= B ) -> -. ( U = { .0. } \/ U = B ) ) |
| 8 |
7
|
adantl |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> -. ( U = { .0. } \/ U = B ) ) |
| 9 |
|
df-nel |
|- ( I e/ Ring <-> -. I e. Ring ) |
| 10 |
1 2 3 4
|
uzlidlring |
|- ( ( R e. Domn /\ U e. L ) -> ( I e. Ring <-> ( U = { .0. } \/ U = B ) ) ) |
| 11 |
10
|
3ad2antr1 |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( I e. Ring <-> ( U = { .0. } \/ U = B ) ) ) |
| 12 |
11
|
notbid |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( -. I e. Ring <-> -. ( U = { .0. } \/ U = B ) ) ) |
| 13 |
9 12
|
bitrid |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( I e/ Ring <-> -. ( U = { .0. } \/ U = B ) ) ) |
| 14 |
8 13
|
mpbird |
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> I e/ Ring ) |