| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlabl.l |  |-  L = ( LIdeal ` R ) | 
						
							| 2 |  | lidlabl.i |  |-  I = ( R |`s U ) | 
						
							| 3 |  | zlidlring.b |  |-  B = ( Base ` R ) | 
						
							| 4 |  | zlidlring.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | neanior |  |-  ( ( U =/= { .0. } /\ U =/= B ) <-> -. ( U = { .0. } \/ U = B ) ) | 
						
							| 6 | 5 | biimpi |  |-  ( ( U =/= { .0. } /\ U =/= B ) -> -. ( U = { .0. } \/ U = B ) ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( U e. L /\ U =/= { .0. } /\ U =/= B ) -> -. ( U = { .0. } \/ U = B ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> -. ( U = { .0. } \/ U = B ) ) | 
						
							| 9 |  | df-nel |  |-  ( I e/ Ring <-> -. I e. Ring ) | 
						
							| 10 | 1 2 3 4 | uzlidlring |  |-  ( ( R e. Domn /\ U e. L ) -> ( I e. Ring <-> ( U = { .0. } \/ U = B ) ) ) | 
						
							| 11 | 10 | 3ad2antr1 |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( I e. Ring <-> ( U = { .0. } \/ U = B ) ) ) | 
						
							| 12 | 11 | notbid |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( -. I e. Ring <-> -. ( U = { .0. } \/ U = B ) ) ) | 
						
							| 13 | 9 12 | bitrid |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( I e/ Ring <-> -. ( U = { .0. } \/ U = B ) ) ) | 
						
							| 14 | 8 13 | mpbird |  |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> I e/ Ring ) |