Metamath Proof Explorer


Theorem lidldomnnring

Description: A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020)

Ref Expression
Hypotheses lidlabl.l
|- L = ( LIdeal ` R )
lidlabl.i
|- I = ( R |`s U )
zlidlring.b
|- B = ( Base ` R )
zlidlring.0
|- .0. = ( 0g ` R )
Assertion lidldomnnring
|- ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> I e/ Ring )

Proof

Step Hyp Ref Expression
1 lidlabl.l
 |-  L = ( LIdeal ` R )
2 lidlabl.i
 |-  I = ( R |`s U )
3 zlidlring.b
 |-  B = ( Base ` R )
4 zlidlring.0
 |-  .0. = ( 0g ` R )
5 neanior
 |-  ( ( U =/= { .0. } /\ U =/= B ) <-> -. ( U = { .0. } \/ U = B ) )
6 5 biimpi
 |-  ( ( U =/= { .0. } /\ U =/= B ) -> -. ( U = { .0. } \/ U = B ) )
7 6 3adant1
 |-  ( ( U e. L /\ U =/= { .0. } /\ U =/= B ) -> -. ( U = { .0. } \/ U = B ) )
8 7 adantl
 |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> -. ( U = { .0. } \/ U = B ) )
9 df-nel
 |-  ( I e/ Ring <-> -. I e. Ring )
10 1 2 3 4 uzlidlring
 |-  ( ( R e. Domn /\ U e. L ) -> ( I e. Ring <-> ( U = { .0. } \/ U = B ) ) )
11 10 3ad2antr1
 |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( I e. Ring <-> ( U = { .0. } \/ U = B ) ) )
12 11 notbid
 |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( -. I e. Ring <-> -. ( U = { .0. } \/ U = B ) ) )
13 9 12 syl5bb
 |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> ( I e/ Ring <-> -. ( U = { .0. } \/ U = B ) ) )
14 8 13 mpbird
 |-  ( ( R e. Domn /\ ( U e. L /\ U =/= { .0. } /\ U =/= B ) ) -> I e/ Ring )