Metamath Proof Explorer


Theorem lincsumscmcl

Description: The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypotheses lincscmcl.s
|- .x. = ( .s ` M )
lincscmcl.r
|- R = ( Base ` ( Scalar ` M ) )
lincsumscmcl.b
|- .+ = ( +g ` M )
Assertion lincsumscmcl
|- ( ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) /\ ( C e. R /\ D e. ( M LinCo V ) /\ B e. ( M LinCo V ) ) ) -> ( ( C .x. D ) .+ B ) e. ( M LinCo V ) )

Proof

Step Hyp Ref Expression
1 lincscmcl.s
 |-  .x. = ( .s ` M )
2 lincscmcl.r
 |-  R = ( Base ` ( Scalar ` M ) )
3 lincsumscmcl.b
 |-  .+ = ( +g ` M )
4 1 2 lincscmcl
 |-  ( ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) /\ C e. R /\ D e. ( M LinCo V ) ) -> ( C .x. D ) e. ( M LinCo V ) )
5 4 3adant3r3
 |-  ( ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) /\ ( C e. R /\ D e. ( M LinCo V ) /\ B e. ( M LinCo V ) ) ) -> ( C .x. D ) e. ( M LinCo V ) )
6 simpr3
 |-  ( ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) /\ ( C e. R /\ D e. ( M LinCo V ) /\ B e. ( M LinCo V ) ) ) -> B e. ( M LinCo V ) )
7 5 6 jca
 |-  ( ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) /\ ( C e. R /\ D e. ( M LinCo V ) /\ B e. ( M LinCo V ) ) ) -> ( ( C .x. D ) e. ( M LinCo V ) /\ B e. ( M LinCo V ) ) )
8 3 lincsumcl
 |-  ( ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) /\ ( ( C .x. D ) e. ( M LinCo V ) /\ B e. ( M LinCo V ) ) ) -> ( ( C .x. D ) .+ B ) e. ( M LinCo V ) )
9 7 8 syldan
 |-  ( ( ( M e. LMod /\ V e. ~P ( Base ` M ) ) /\ ( C e. R /\ D e. ( M LinCo V ) /\ B e. ( M LinCo V ) ) ) -> ( ( C .x. D ) .+ B ) e. ( M LinCo V ) )