Metamath Proof Explorer


Theorem lincsumscmcl

Description: The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypotheses lincscmcl.s · ˙ = M
lincscmcl.r R = Base Scalar M
lincsumscmcl.b + ˙ = + M
Assertion lincsumscmcl M LMod V 𝒫 Base M C R D M LinCo V B M LinCo V C · ˙ D + ˙ B M LinCo V

Proof

Step Hyp Ref Expression
1 lincscmcl.s · ˙ = M
2 lincscmcl.r R = Base Scalar M
3 lincsumscmcl.b + ˙ = + M
4 1 2 lincscmcl M LMod V 𝒫 Base M C R D M LinCo V C · ˙ D M LinCo V
5 4 3adant3r3 M LMod V 𝒫 Base M C R D M LinCo V B M LinCo V C · ˙ D M LinCo V
6 simpr3 M LMod V 𝒫 Base M C R D M LinCo V B M LinCo V B M LinCo V
7 5 6 jca M LMod V 𝒫 Base M C R D M LinCo V B M LinCo V C · ˙ D M LinCo V B M LinCo V
8 3 lincsumcl M LMod V 𝒫 Base M C · ˙ D M LinCo V B M LinCo V C · ˙ D + ˙ B M LinCo V
9 7 8 syldan M LMod V 𝒫 Base M C R D M LinCo V B M LinCo V C · ˙ D + ˙ B M LinCo V