Metamath Proof Explorer


Theorem lincsumscmcl

Description: The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypotheses lincscmcl.s ·˙=M
lincscmcl.r R=BaseScalarM
lincsumscmcl.b +˙=+M
Assertion lincsumscmcl MLModV𝒫BaseMCRDMLinCoVBMLinCoVC·˙D+˙BMLinCoV

Proof

Step Hyp Ref Expression
1 lincscmcl.s ·˙=M
2 lincscmcl.r R=BaseScalarM
3 lincsumscmcl.b +˙=+M
4 1 2 lincscmcl MLModV𝒫BaseMCRDMLinCoVC·˙DMLinCoV
5 4 3adant3r3 MLModV𝒫BaseMCRDMLinCoVBMLinCoVC·˙DMLinCoV
6 simpr3 MLModV𝒫BaseMCRDMLinCoVBMLinCoVBMLinCoV
7 5 6 jca MLModV𝒫BaseMCRDMLinCoVBMLinCoVC·˙DMLinCoVBMLinCoV
8 3 lincsumcl MLModV𝒫BaseMC·˙DMLinCoVBMLinCoVC·˙D+˙BMLinCoV
9 7 8 syldan MLModV𝒫BaseMCRDMLinCoVBMLinCoVC·˙D+˙BMLinCoV