Step |
Hyp |
Ref |
Expression |
1 |
|
lincscmcl.s |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
2 |
|
lincscmcl.r |
⊢ 𝑅 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
3 |
|
lincsumscmcl.b |
⊢ + = ( +g ‘ 𝑀 ) |
4 |
1 2
|
lincscmcl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ) → ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |
5 |
4
|
3adant3r3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |
6 |
|
simpr3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) |
7 |
5 6
|
jca |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) |
8 |
3
|
lincsumcl |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( ( 𝐶 · 𝐷 ) + 𝐵 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |
9 |
7 8
|
syldan |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( ( 𝐶 · 𝐷 ) + 𝐵 ) ∈ ( 𝑀 LinCo 𝑉 ) ) |