Metamath Proof Explorer


Theorem lincsumscmcl

Description: The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019)

Ref Expression
Hypotheses lincscmcl.s · = ( ·𝑠𝑀 )
lincscmcl.r 𝑅 = ( Base ‘ ( Scalar ‘ 𝑀 ) )
lincsumscmcl.b + = ( +g𝑀 )
Assertion lincsumscmcl ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶𝑅𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( ( 𝐶 · 𝐷 ) + 𝐵 ) ∈ ( 𝑀 LinCo 𝑉 ) )

Proof

Step Hyp Ref Expression
1 lincscmcl.s · = ( ·𝑠𝑀 )
2 lincscmcl.r 𝑅 = ( Base ‘ ( Scalar ‘ 𝑀 ) )
3 lincsumscmcl.b + = ( +g𝑀 )
4 1 2 lincscmcl ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐶𝑅𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ) → ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) )
5 4 3adant3r3 ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶𝑅𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) )
6 simpr3 ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶𝑅𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) )
7 5 6 jca ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶𝑅𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) )
8 3 lincsumcl ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( ( 𝐶 · 𝐷 ) ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( ( 𝐶 · 𝐷 ) + 𝐵 ) ∈ ( 𝑀 LinCo 𝑉 ) )
9 7 8 syldan ( ( ( 𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ ( 𝐶𝑅𝐷 ∈ ( 𝑀 LinCo 𝑉 ) ∧ 𝐵 ∈ ( 𝑀 LinCo 𝑉 ) ) ) → ( ( 𝐶 · 𝐷 ) + 𝐵 ) ∈ ( 𝑀 LinCo 𝑉 ) )