Metamath Proof Explorer


Theorem lincscmcl

Description: The multiplication of a linear combination with a scalar is a linear combination, see also the proof in Lang p. 129. (Contributed by AV, 11-Apr-2019) (Proof shortened by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincscmcl.s ·˙=M
lincscmcl.r R=BaseScalarM
Assertion lincscmcl MLModV𝒫BaseMCRDMLinCoVC·˙DMLinCoV

Proof

Step Hyp Ref Expression
1 lincscmcl.s ·˙=M
2 lincscmcl.r R=BaseScalarM
3 eqid BaseM=BaseM
4 eqid ScalarM=ScalarM
5 3 4 2 lcoval MLModV𝒫BaseMDMLinCoVDBaseMxRVfinSupp0ScalarMxD=xlinCMV
6 5 adantr MLModV𝒫BaseMCRDMLinCoVDBaseMxRVfinSupp0ScalarMxD=xlinCMV
7 simpl MLModV𝒫BaseMMLMod
8 7 ad2antrr MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVMLMod
9 simpr MLModV𝒫BaseMCRCR
10 9 adantr MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVCR
11 simprl MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVDBaseM
12 3 4 1 2 lmodvscl MLModCRDBaseMC·˙DBaseM
13 8 10 11 12 syl3anc MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVC·˙DBaseM
14 4 lmodring MLModScalarMRing
15 14 ad2antrr MLModV𝒫BaseMCRScalarMRing
16 15 adantl xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRScalarMRing
17 16 adantr xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVScalarMRing
18 9 adantl xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRCR
19 18 adantr xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVCR
20 elmapi xRVx:VR
21 ffvelcdm x:VRvVxvR
22 21 ex x:VRvVxvR
23 20 22 syl xRVvVxvR
24 23 adantr xRVfinSupp0ScalarMxD=xlinCMVvVxvR
25 24 ad2antrr xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVxvR
26 25 imp xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVxvR
27 eqid ScalarM=ScalarM
28 2 27 ringcl ScalarMRingCRxvRCScalarMxvR
29 17 19 26 28 syl3anc xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVCScalarMxvR
30 29 fmpttd xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVCScalarMxv:VR
31 2 fvexi RV
32 simpr MLModV𝒫BaseMV𝒫BaseM
33 32 adantr MLModV𝒫BaseMCRV𝒫BaseM
34 33 adantl xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRV𝒫BaseM
35 elmapg RVV𝒫BaseMvVCScalarMxvRVvVCScalarMxv:VR
36 31 34 35 sylancr xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVCScalarMxvRVvVCScalarMxv:VR
37 30 36 mpbird xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRvVCScalarMxvRV
38 15 33 9 3jca MLModV𝒫BaseMCRScalarMRingV𝒫BaseMCR
39 38 adantl xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRScalarMRingV𝒫BaseMCR
40 simpl xRVfinSupp0ScalarMxD=xlinCMVxRV
41 40 ad2antrr xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRxRV
42 simprl xRVfinSupp0ScalarMxD=xlinCMVfinSupp0ScalarMx
43 42 ad2antrr xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRfinSupp0ScalarMx
44 2 rmfsupp ScalarMRingV𝒫BaseMCRxRVfinSupp0ScalarMxfinSupp0ScalarMvVCScalarMxv
45 39 41 43 44 syl3anc xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRfinSupp0ScalarMvVCScalarMxv
46 oveq2 D=xlinCMVC·˙D=C·˙xlinCMV
47 46 adantl finSupp0ScalarMxD=xlinCMVC·˙D=C·˙xlinCMV
48 47 adantl xRVfinSupp0ScalarMxD=xlinCMVC·˙D=C·˙xlinCMV
49 48 ad2antrr xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRC·˙D=C·˙xlinCMV
50 simprl xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRMLModV𝒫BaseM
51 40 adantr xRVfinSupp0ScalarMxD=xlinCMVDBaseMxRV
52 51 9 anim12i xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRxRVCR
53 eqid xlinCMV=xlinCMV
54 eqid vVCScalarMxv=vVCScalarMxv
55 1 27 53 2 54 lincscm MLModV𝒫BaseMxRVCRfinSupp0ScalarMxC·˙xlinCMV=vVCScalarMxvlinCMV
56 50 52 43 55 syl3anc xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRC·˙xlinCMV=vVCScalarMxvlinCMV
57 49 56 eqtrd xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRC·˙D=vVCScalarMxvlinCMV
58 breq1 s=vVCScalarMxvfinSupp0ScalarMsfinSupp0ScalarMvVCScalarMxv
59 oveq1 s=vVCScalarMxvslinCMV=vVCScalarMxvlinCMV
60 59 eqeq2d s=vVCScalarMxvC·˙D=slinCMVC·˙D=vVCScalarMxvlinCMV
61 58 60 anbi12d s=vVCScalarMxvfinSupp0ScalarMsC·˙D=slinCMVfinSupp0ScalarMvVCScalarMxvC·˙D=vVCScalarMxvlinCMV
62 61 rspcev vVCScalarMxvRVfinSupp0ScalarMvVCScalarMxvC·˙D=vVCScalarMxvlinCMVsRVfinSupp0ScalarMsC·˙D=slinCMV
63 37 45 57 62 syl12anc xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRsRVfinSupp0ScalarMsC·˙D=slinCMV
64 63 ex xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRsRVfinSupp0ScalarMsC·˙D=slinCMV
65 64 ex xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRsRVfinSupp0ScalarMsC·˙D=slinCMV
66 65 rexlimiva xRVfinSupp0ScalarMxD=xlinCMVDBaseMMLModV𝒫BaseMCRsRVfinSupp0ScalarMsC·˙D=slinCMV
67 66 impcom DBaseMxRVfinSupp0ScalarMxD=xlinCMVMLModV𝒫BaseMCRsRVfinSupp0ScalarMsC·˙D=slinCMV
68 67 impcom MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVsRVfinSupp0ScalarMsC·˙D=slinCMV
69 3 4 2 lcoval MLModV𝒫BaseMC·˙DMLinCoVC·˙DBaseMsRVfinSupp0ScalarMsC·˙D=slinCMV
70 69 ad2antrr MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVC·˙DMLinCoVC·˙DBaseMsRVfinSupp0ScalarMsC·˙D=slinCMV
71 13 68 70 mpbir2and MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVC·˙DMLinCoV
72 71 ex MLModV𝒫BaseMCRDBaseMxRVfinSupp0ScalarMxD=xlinCMVC·˙DMLinCoV
73 6 72 sylbid MLModV𝒫BaseMCRDMLinCoVC·˙DMLinCoV
74 73 3impia MLModV𝒫BaseMCRDMLinCoVC·˙DMLinCoV