| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincscmcl.s |
|
| 2 |
|
lincscmcl.r |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
3 4 2
|
lcoval |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpl |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
|
simpr |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simprl |
|
| 12 |
3 4 1 2
|
lmodvscl |
|
| 13 |
8 10 11 12
|
syl3anc |
|
| 14 |
4
|
lmodring |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
adantr |
|
| 18 |
9
|
adantl |
|
| 19 |
18
|
adantr |
|
| 20 |
|
elmapi |
|
| 21 |
|
ffvelcdm |
|
| 22 |
21
|
ex |
|
| 23 |
20 22
|
syl |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
25
|
imp |
|
| 27 |
|
eqid |
|
| 28 |
2 27
|
ringcl |
|
| 29 |
17 19 26 28
|
syl3anc |
|
| 30 |
29
|
fmpttd |
|
| 31 |
2
|
fvexi |
|
| 32 |
|
simpr |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
adantl |
|
| 35 |
|
elmapg |
|
| 36 |
31 34 35
|
sylancr |
|
| 37 |
30 36
|
mpbird |
|
| 38 |
15 33 9
|
3jca |
|
| 39 |
38
|
adantl |
|
| 40 |
|
simpl |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
|
simprl |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
2
|
rmfsupp |
|
| 45 |
39 41 43 44
|
syl3anc |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
adantl |
|
| 48 |
47
|
adantl |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
|
simprl |
|
| 51 |
40
|
adantr |
|
| 52 |
51 9
|
anim12i |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
1 27 53 2 54
|
lincscm |
|
| 56 |
50 52 43 55
|
syl3anc |
|
| 57 |
49 56
|
eqtrd |
|
| 58 |
|
breq1 |
|
| 59 |
|
oveq1 |
|
| 60 |
59
|
eqeq2d |
|
| 61 |
58 60
|
anbi12d |
|
| 62 |
61
|
rspcev |
|
| 63 |
37 45 57 62
|
syl12anc |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
ex |
|
| 66 |
65
|
rexlimiva |
|
| 67 |
66
|
impcom |
|
| 68 |
67
|
impcom |
|
| 69 |
3 4 2
|
lcoval |
|
| 70 |
69
|
ad2antrr |
|
| 71 |
13 68 70
|
mpbir2and |
|
| 72 |
71
|
ex |
|
| 73 |
6 72
|
sylbid |
|
| 74 |
73
|
3impia |
|